Quantum Information Processing

, Volume 10, Issue 1, pp 85–96 | Cite as

Geometric phase as a determinant of a qubit– environment coupling

Article

Abstract

We investigate the qubit geometric phase and its properties in dependence on the mechanism for decoherence of a qubit weakly coupled to its environment. We consider two sources of decoherence: dephasing coupling (without exchange of energy with environment) and dissipative coupling (with exchange of energy). Reduced dynamics of the qubit is studied in terms of the rigorous Davies Markovian quantum master equation, both at zero and non–zero temperature. For pure dephasing coupling, the geometric phase varies monotonically with respect to the polar angle (in the Bloch sphere representation) parameterizing an initial state of the qubit. Moreover, it is antisymmetric about some points on the geometric phase-polar angle plane. This is in distinct contrast to the case of dissipative coupling for which the variation of the geometric phase with respect to the polar angle typically is non-monotonic, displaying local extrema and is not antisymmetric. Sensitivity of the geometric phase to details of the decoherence source can make it a tool for testing the nature of the qubit–environment interaction.

Keywords

Geometric phase Dephasing Dissipation Open system Davies theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Lidar D.A., Whalley K.B.: Irreversible quantum dynamics. Lecture Notes in Physics, vol. 622, 83. Springer, Berlin (2006)Google Scholar
  3. 3.
    Alicki, R.: ibid, 121Google Scholar
  4. 4.
    Kohler S., Hänggi P.: Improving the purity of one- and two-qubit gates. Fortschr. Physik 54, 804–819 (2006)CrossRefADSMATHGoogle Scholar
  5. 5.
    Zanardi P., Rasseti M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)CrossRefMathSciNetADSMATHGoogle Scholar
  6. 6.
    Nayak C. et al.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)CrossRefMathSciNetADSMATHGoogle Scholar
  7. 7.
    Jones J.A., Vedral V., Ekert A., Castagnoli G.: Geometric quantum computation using nuclear magnetic resonance. Nature (London) 403, 869–871 (2000)CrossRefADSGoogle Scholar
  8. 8.
    Sarandy M.S., Lidar D.A.: Adiabatic quantum computation in open systems. Phys. Rev. Lett. 95, 250503–250507 (2005)CrossRefADSPubMedGoogle Scholar
  9. 9.
    Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London ser. A 329, 45–57 (1984)ADSGoogle Scholar
  10. 10.
    Wilczek F., Zee A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Duan L.-M., Cirac J.I., Zoller P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)CrossRefADSPubMedGoogle Scholar
  12. 12.
    Recati A., Calarco T., Zanardi P., Cirac J.I., Zoller P.: Holonomic quantum computation with neutral atoms. Phys. Rev. A 66, 032309–032322 (2002)CrossRefADSGoogle Scholar
  13. 13.
    Yin S., Tong M.D.: Geometric phase of a quantum dot system in nonunitary evolution. Phys. Rev. A 79, 044303–044307 (2009)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Falci G., Fazio R., Palma G.M., Siewert J., Vedral V.: Detection of geometric phases in superconducting nanocircuits. Nature 407, 355–358 (2000)CrossRefADSPubMedGoogle Scholar
  15. 15.
    Faoro L., Siewert J., Fazio R.: Non-abelian phases, charge pumping and holonomic computation with Josephson junctions. J. Phys. Soc. Jpn. 72, 3–4 (2003)CrossRefGoogle Scholar
  16. 16.
    Parodi D., Sassetti M., Solinas P., Zanardi P., Zangh N.: Fidelity optimization for holonomic quantum gates in dissipative environments. Phys. Rev. A 73, 052304–052309 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Parodi D., Sassetti M., Solinas P., Zangh N.: Environmental noise reduction for holonomic quantum gates. Phys. Rev. A 76, 012337–012343 (2007)CrossRefADSGoogle Scholar
  18. 18.
    Uhlmann A.: The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)CrossRefMathSciNetADSMATHGoogle Scholar
  19. 19.
    Bassi A., Ippoliti E.: Geometric phase for open quantum systems and stochastic uravellings. Phys. Rev. A 73, 062104–062111 (2006)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Burić N., Radonjić M.: Uniquely defined geometric phase of an open system. Phys. Rev. A 80, 014101–014105 (2009)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Sjöqvist E. et al.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845–2849 (2000)CrossRefADSPubMedGoogle Scholar
  22. 22.
    Bhandari R.: Singularities of the mixed state phase. Phys. Rev. Lett. 89, 268901 (2002)CrossRefMathSciNetADSPubMedGoogle Scholar
  23. 23.
    Sjöqvist E.: Quantal interferometry with dissipative internal motion. Phys. Rev. A 70, 052109–052115 (2004)CrossRefADSGoogle Scholar
  24. 24.
    Bhandari R.: Polarization of light and topological phases. Phys. Rep. 281, 1–64 (1997)CrossRefADSGoogle Scholar
  25. 25.
    Du J. et al.: An experimental observation of geometric phases for mixed states using NMR interferometry. Phys. Rev. Lett. 91, 100403–100407 (2003)CrossRefADSPubMedGoogle Scholar
  26. 26.
    Mukunda N., Simon R.: Quantum kinematic approach to the geometric phase I. General formalism. Ann. Phys. 228, 205–268 (1993)CrossRefMathSciNetADSMATHGoogle Scholar
  27. 27.
    Tong D.M., Sjöqvist E., Kwek L.C., Oh C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405–080409 (2004)CrossRefADSPubMedGoogle Scholar
  28. 28.
    Carollo A., Fuentes-Guridi I., Frana Santos M., Vedral V.: Geometric phase in open systems. Phys. Rev. Lett. 90, 160402–160406 (2003)CrossRefMathSciNetADSPubMedGoogle Scholar
  29. 29.
    Ericsson M., Sjöqvist E., Brännlund J., Oi D.K., Pati A.K.: Generalization of the geometric phase to completely positive maps. Phys. Rev. A 67, 020101–020105 (2003)CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    Marzlin K.-P., Ghose S., Sanders B.C.: Geometric phase distributions for open quantum systems. Phys. Rev. Lett. 93, 260402–260406 (2004)CrossRefADSPubMedGoogle Scholar
  31. 31.
    Whitney R.S., Makhlin Y., Shnirman A., Gefen Y.: Geometric nature of the environment-induced Berry phase and geometric dephasing. Phys. Rev. Lett. 94, 070407–070411 (2005)CrossRefMathSciNetADSPubMedGoogle Scholar
  32. 32.
    Sarandy M.S., Duzzioni E.I., Moussa M.H.Y.: Dynamical invariants and nonadiabatic geometric phases in open quantum systems. Phys. Rev. A 76, 052112–052121 (2007)CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Huang X.L., Yi X.X.: Non-Markovian effects on the geometric phase. Europhys. Lett. 82, 50001–50007 (2008)CrossRefADSGoogle Scholar
  34. 34.
    Banerjee S., Srikanth R.: Geometric phase of a qubit interacting with a squeezed-thermal bath. Eur. Phys. J. D 46, 335–344 (2008)CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Fujikawa K., Hu M.-G.: Geometric phase of a two-level system in a dissipative environment. Phys. Rev. A 79, 052107–052114 (2009)CrossRefADSGoogle Scholar
  36. 36.
    Wang Z.S., Liu G.Q., Ji Y.H.: Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system. Phys. Rev. A 79, 054301–054305 (2009)CrossRefADSGoogle Scholar
  37. 37.
    Singh K. et al.: Geometric phases for nondegenerate and degenerate mixed states. Phys. Rev. A 67, 032106–032115 (2003)CrossRefADSGoogle Scholar
  38. 38.
    Hänggi P., Ingold G.L.: Fundamental aspects of quantum Brownian motion. Chaos 15, 026105–026115 (2005)CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Alicki R., Fannes M., Pogorzelska M.: Quantum generalized subsystems. Phys. Rev. A 79, 052111–052120 (2009)CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    Łuczka J.: Spin in contact with thermostat: Exact reduced dynamics. Physica A 167, 919–934 (1990)CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    Alicki R.: Pure decoherence in quantum systems. Open Sys. & Inf. Dyn. 11, 53–61 (2004)CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Romero K.M.F., Talkner P., Hänggi P.: Is the dynamics of open quantum systems always linear?. Phys. Rev. A 69, 052109–052117 (2004)CrossRefADSGoogle Scholar
  43. 43.
    Dajka J., Mierzejewski M., Łuczka J.: Fidelity of asymmetric dephasing channels. Phys. Rev. A 79, 012104–012111 (2009)CrossRefADSGoogle Scholar
  44. 44.
    Doll R., Wubs M., Hänggi P., Kohler S.: Limitation of entanglement due to spatial qubit separation. Europhys. Lett. 76, 547–553 (2006)CrossRefADSGoogle Scholar
  45. 45.
    Doll R., Wubs M., Hänggi P., Kohler S.: Incomplete pure dephasing of N-qubit entangled W states. Phys. Rev. B 76, 045317–045331 (2007)CrossRefADSGoogle Scholar
  46. 46.
    Dajka J., Mierzejewski M., Łuczka J.: Entanglement persistence in contact with the environment: exact results. J. Phys. A: Math. Theor. 40, F879–F886 (2007)CrossRefADSGoogle Scholar
  47. 47.
    Dajka J., Łuczka J.: Origination and survival of qudit-qudit entanglement in open systems. Phys. Rev. A 77, 062303–062310 (2008)CrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Doll R., Hänggi P., Kohler S., Wubs M.: Fast initial qubit decoherence and the influence of substrate dimensions on error correction rates. Eur. Phys. J. B 68, 523–527 (2009)CrossRefADSGoogle Scholar
  49. 49.
    Yi X.X., Wang L.C., Wang W.: Geometric phase in dephasing systems. Phys. Rev. A 71, 044101–044105 (2005)CrossRefADSGoogle Scholar
  50. 50.
    Yi X.X., Tong D.M., Wang L.C., Kwek L.C., Oh C.H.: Geometric phase in open systems: beyond the Markov approximation and weak-coupling limit. Phys. Rev. A 73, 052103–052109 (2006)CrossRefADSGoogle Scholar
  51. 51.
    Dajka J., Mierzejewski M., Łuczka J.: Geometric phase of a qubit in dephasing environment. J. Phys. A Math. Theor. 41, F012001–F012008 (2008)CrossRefGoogle Scholar
  52. 52.
    Dajka J., Łuczka J.: Bifurcations of the geometric phase of a qubit asymmetrically coupled to the environment. J. Phys. A: Math. Theor. 41, F442001–F442009 (2008)CrossRefADSGoogle Scholar
  53. 53.
    Davies E.B.: Markovian master equations. Comm. Math. Phys. 39, 91–110 (1974)CrossRefMathSciNetADSMATHGoogle Scholar
  54. 54.
    Dümcke R., Spohn H.: The proper form of the generator in the weak coupling limit. Z. Physik B 34, 419–422 (1979)CrossRefADSGoogle Scholar
  55. 55.
    Łuczka J.: On Markovian kinetic equations: Zubarev’s nonequilibrium statistical operator approach. Physica A 149, 245–266 (1988)CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    Lendi K., van Wonderen A.J.: Davies theory for reservoir-induced entanglement in a bipartite system. J. Phys. A Math. Theor. 40, 279–288 (2007)CrossRefADSMATHGoogle Scholar
  57. 57.
    Schuster D.I. et al.: Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007)CrossRefADSPubMedGoogle Scholar
  58. 58.
    Alicki R., Lendi K.: Quantum dynamical semigroups and applications. Springer, Berlin (1987)MATHGoogle Scholar
  59. 59.
    Aharonov Y., Ananadan J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1597 (1987)CrossRefMathSciNetADSPubMedGoogle Scholar
  60. 60.
    Chruściński D., Jamiołkowski A.: Geometric phases in classical and quantum mechanics. Birkhauser, Boston (2004)MATHGoogle Scholar
  61. 61.
    Leek P.J. et al.: Observation of Berry’s phase in a solid-state qubit. Science 318, 1889–1892 (2007)CrossRefMathSciNetADSPubMedMATHGoogle Scholar
  62. 62.
    Möttönen M. et al.: Experimental determination of the Berry phase in a superconducting charge pump. Phys. Rev. Lett. 100, 177201–177205 (2008)CrossRefPubMedGoogle Scholar
  63. 63.
    Fillipp S. et al.: Experimental demonstration of the stability of Berry’s phase for a spin-1/2 particle. Phys. Rev. Lett. 102, 030404–030408 (2009)CrossRefADSGoogle Scholar
  64. 64.
    Nesterov A.I., Ovchinnikov S.G.: Geometric phases and quantum phase transitions in open systems. Phys. Rev. E 78, 015202–015206 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of SilesiaKatowicePoland
  2. 2.Institute of PhysicsUniversity of AugsburgAugsburgGermany

Personalised recommendations