Skip to main content
Log in

A study of heuristic guesses for adiabatic quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Adiabatic quantum computation (AQC) is a universal model for quantum computation which seeks to transform the initial ground state of a quantum system into a final ground state encoding the answer to a computational problem. AQC initial Hamiltonians conventionally have a uniform superposition as ground state. We diverge from this practice by introducing a simple form of heuristics: the ability to start the quantum evolution with a state which is a guess to the solution of the problem. With this goal in mind, we explain the viability of this approach and the needed modifications to the conventional AQC (CAQC) algorithm. By performing a numerical study on hard-to-satisfy 6 and 7 bit random instances of the satisfiability problem (3-SAT), we show how this heuristic approach is possible and we identify that the performance of the particular algorithm proposed is largely determined by the Hamming distance of the chosen initial guess state with respect to the solution. Besides the possibility of introducing educated guesses as initial states, the new strategy allows for the possibility of restarting a failed adiabatic process from the measured excited state as opposed to restarting from the full superposition of states as in CAQC. The outcome of the measurement can be used as a more refined guess state to restart the adiabatic evolution. This concatenated restart process is another heuristic that the CAQC strategy cannot capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution, quant-ph/0001106 (2000)

  2. Childs A.M., Farhi E., Preskill J.: Robustness of adiabatic quantum computation. Phys. Rev. A 65, 012322 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Lidar D.A.: Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100, 160506 (2008)

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001)

    Article  CAS  MathSciNet  ADS  PubMed  MATH  Google Scholar 

  5. Hogg T.: Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67, 022314 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Young A.P., Knysh S., Smelyanskiy V.N.: Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. Phys. Rev. Lett. 101, 170503 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Perdomo A., Truncik C., Tubert-Brohman I., Rose G., Aspuru-Guzik A.: Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models. Phys. Rev. A 78, 012320 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Farhi, E., Goldstone, J., Gutmann, S.: Quantum adiabatic evolution algorithms with different paths, quant-ph/0208135 (2002)

  9. Rezakhani A.T., Kuo W., Hamma A., Lidar D.A., Zanardi P.: Quantum adiabatic brachistochrone. Phys. Rev. Lett. 103, 080502 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Farhi E., Goldstone J., Gutmann S., Nagaj D.: How to make the quantum adiabatic algorithm fail. Int. J. Quantum Inf. 06, 503–516 (2008)

    Article  Google Scholar 

  11. Roland J., Cerf N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Znidaric M., Horvat M.: Exponential complexity of an adiabatic algorithm for an NP-complete problem. Phys. Rev. A 73, 022329 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Amin M.H.S.: Effect of local minima on adiabatic quantum optimization. Phys. Rev. Lett. 100, 130503 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Garey M., Johnson D.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  15. Sipser M.: Introduction to the Theory of Computation. PWS Publishing Company, Boston (2005)

    Google Scholar 

  16. Hogg T.: Highly structured searches with quantum computers. Phys. Rev. Lett. 80, 2473 (1998)

    Article  CAS  ADS  Google Scholar 

  17. Hogg T.: Quantum search heuristics. Phys. Rev. A 61, 052311 (2000)

    Article  ADS  Google Scholar 

  18. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  CAS  ADS  Google Scholar 

  19. Aspuru-Guzik A., Dutoi A.D., Love P.J., Head-Gordon M.: Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Ward N.J., Kassal I., Aspuru-Guzik A.: Preparation of many-body states for quantum simulation. J. Chem. Phys. 130, 194105 (2009)

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Wang H., Kais S., Aspuru-Guzik A., Hoffmann M.R.: Quantum algorithm for obtaining the energy spectrum of molecular systems. Phys. Chem. Chem. Phys. 10, 5388–5393 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Wang H., Ashhab S., Nori F.: Efficient quantum algorithm for preparing molecular-system-like states on a quantum computer. Phys. Rev. A 79, 042335 (2009)

    Article  ADS  CAS  Google Scholar 

  23. Kohen D., Tannor D.J.: Quantum adiabatic switching. J. Chem. Phys. 98, 3168 (1993)

    Article  CAS  ADS  Google Scholar 

  24. Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge, In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, pp. 20–29. San Diego, CA, USA, ACM (2003)

  25. Messiah A.: Quantum Mechanics (Physics). Dover Publications, Mineola (1999)

    Google Scholar 

  26. Marzlin K., Sanders B.C.: Inconsistency in the application of the adiabatic theorem. Phys. Rev. Lett. 93, 160408 (2004)

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Tong D.M., Singh K., Kwek L.C., Oh C.H.: Sufficiency criterion for the validity of the adiabatic approximation. Phys. Rev. Lett. 98, 150402 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  28. Wei Z., Ying M.: Quantum adiabatic computation and adiabatic conditions. Phys. Rev. A 76, 024304 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Zhao Y.: Reexamination of the quantum adiabatic theorem. Phys. Rev. A 77, 032109 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Amin M.H.S.: Consistency of the adiabatic theorem. Phys. Rev. Lett. 102, 220401 (2009)

    Article  CAS  MathSciNet  ADS  PubMed  Google Scholar 

  31. MacKenzie R., Morin-Duchesne A., Paquette H., Pinel J.: Validity of the adiabatic approximation in quantum mechanics. Phys. Rev. A 76, 044102 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Ambainis, A., Regev, O.: An elementary proof of the quantum adiabatic theorem, quant-ph/0411152s (2004)

  33. Jansen S., Ruskai M., Seiler R.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48, 102111 (2007)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  34. Da Wu, J., Sheng Z.M., Lan C.J., De Zhang, Y.: Adiabatic approximation condition, arXiv:0706.0264v2 (2007)

  35. Chen, J.-L., Sheng Z.M., Da Wu, J., De Zhang, Y.: Invariant perturbation theory of adiabatic process, http://arxiv.org/abs/0706.0299 (2007)

  36. Andrecut M., Ali M.K.: Unstructured adiabatic quantum search. Int. J. Theor. Phys. 43, 925–931 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Siu M.S.: Adiabatic rotation, quantum search, and preparation of superposition states. Phys. Rev. A 75, 062337 (2007)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  38. Acharyya S.: SAT algorithms for colouring some special classes of graphs: some theoretical and experimental results. J. Satisfiability, Boolean Model. Comput. 4, 33–35 (2007)

    MathSciNet  Google Scholar 

  39. Gent, I., Walsh, T.: The search for satisfaction, Internal report, department of computer science, University of Strathclyde (1999)

  40. Mezard M., Parisi G., Zecchina R.: Analytic and algorithmic solution of random satisfiability problems. Science 297, 812–815 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  41. Achlioptas D., Naor A., Peres Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  42. Mezard M., Mora T., Zecchina R.: Clustering of solutions in the random satisfiability problem. Phys. Rev. Lett. 94, 197205 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  43. Watanabe research group of Department of Mathematics and Computing Sciences, Tokyo Institute of Technology, http://www.is.titech.ac.jp/~watanabe/gensat/

  44. Farhi, E., Goldstone, J., Gosset, D., Gutmann, S., Meyer, H., Shor, P.: Quantum adiabatic algorithms, small gaps, and different paths, arxiv.org/abs/0909.4766 (2009)

  45. Žnidaric M.: Scaling of the running time of the quantum adiabatic algorithm for propositional satisfiability. Phys. Rev. A 71, 062305 (2005)

    Article  ADS  CAS  Google Scholar 

  46. Du J., Hu L., Wang Y., Wu J., Zhao M., Suter D.: Experimental study of the validity of quantitative conditions in the quantum adiabatic theorem. Phys. Rev. Lett. 101, 060403 (2008)

    Article  ADS  PubMed  CAS  Google Scholar 

  47. Kautz H., Selman B.: The state of SAT. Discrete Appl. Math. 155, 1514–1524 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Farhi, E., Goldstone, J., Gutmann, S.: Quantum adiabatic evolution algorithms with different paths, quant-ph/0208135 (2002)

  49. Kempe J., Kitaev A., Regev O.: The complexity of the local Hamiltonian problem. SIAM J. Comput. 35, 1070–1097 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Bravyi, S.: Efficient algorithm for a quantum analogue of 2-SAT, quant-ph/0602108 (2006)

  51. Oliveira R., Terhal B.M.: The complexity of quantum system on a two-dimensional square lattice. Quantum Inf. Comput. 8, 0900–0924 (2008)

    MathSciNet  Google Scholar 

  52. Aharonov D., Ta-Shma A.: Adiabatic quantum state generation. SIAM J. Comput. 37, 47–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. Mizel A., Lidar D.A., Mitchell M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007)

    Article  ADS  PubMed  CAS  Google Scholar 

  54. Schutzhold R., Schaller G.: Adiabatic quantum algorithms as quantum phase transitions: first versus second order. Phys. Rev. A 74, 060304 (2006)

    Article  ADS  CAS  Google Scholar 

  55. Latorre J., Orus R.: Adiabatic quantum computation and quantum phase transitions. Phys. Rev. A 69, 062302 (2004)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  56. Orus R., Latorre J.I.: Universality of entanglement and quantum-computation complexity. Phys. Rev. A 69, 052308 (2004)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  57. Young, A.P., Knysh, S., Smelyanskiy, V.N.: First-order phase transition in the quantum adiabatic algorithm. Phys. Rev. Lett. 104 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alán Aspuru-Guzik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perdomo-Ortiz, A., Venegas-Andraca, S.E. & Aspuru-Guzik, A. A study of heuristic guesses for adiabatic quantum computation. Quantum Inf Process 10, 33–52 (2011). https://doi.org/10.1007/s11128-010-0168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0168-z

Keywords

Navigation