Quantum Information Processing

, Volume 9, Issue 2, pp 273–294 | Cite as

Monogamy of correlations versus monogamy of entanglement

Open Access
Article

Abstract

A fruitful way of studying physical theories is via the question whether the possible physical states and different kinds of correlations in each theory can be shared to different parties. Over the past few years it has become clear that both quantum entanglement and non-locality (i.e., correlations that violate Bell-type inequalities) have limited shareability properties and can sometimes even be monogamous. We give a self-contained review of these results and present new results on the shareability of different kinds of correlations, including local, quantum and no-signalling correlations. This includes an alternative simpler proof of the Toner-Verstraete monogamy inequality for quantum correlations, as well as a strengthening thereof. Further, the relationship between sharing non-local quantum correlations and sharing mixed entangled states is investigated, and already for the simplest case of bi-partite correlations and qubits this is shown to be non-trivial. Also, a recently proposed new interpretation of Bell’s theorem by Schumacher in terms of shareability of correlations is critically assessed. Finally, the relevance of monogamy of non-local correlations for secure quantum key distribution is pointed out, and in this regard it is stressed that not all non-local correlations are monogamous.

Keywords

Quantum mechanics Entanglement Non-locality Monogamy No-signalling Shareability Cryptography 

Notes

Acknowledgments

I am grateful to Jos Uffink and Marcin Pawłowski for fruitful discussions.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Barrett J., Hardy L., Kent A.: No signalling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)CrossRefPubMedADSGoogle Scholar
  3. 3.
    Coffman V., Kundu J., Wootters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Osborne T.J., Verstraete F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)CrossRefPubMedADSGoogle Scholar
  5. 5.
    Toner, B.F., Verstraete, F.: Monogamy of bell correlations and Tsirelson’s bound. See http://arXiv.org/abs/quant-ph/0611001 (2006)
  6. 6.
    Toner B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59 (2009)CrossRefMathSciNetADSMATHGoogle Scholar
  7. 7.
    Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In Proceedings of the 19th IEEE Conference on Computational Complexity, 236–249 (2004). See: http://arXiv.org/abs/quant-ph/0404076 (2004)
  8. 8.
    Clauser J.F., Horne M.A., Shimony A., Holt R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)CrossRefADSGoogle Scholar
  9. 9.
    Masanes L.: Universally-composable privacy amplification from causality constraints. Phys. Rev. Lett. 102, 140501 (2009)CrossRefPubMedADSGoogle Scholar
  10. 10.
    Masanes L., Acín A., Gisin N.: General properties of nosignalling theories. Phys. Rev. A 73, 012112 (2006)CrossRefADSGoogle Scholar
  11. 11.
    Koashi M., Winter A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Barrett J., Linden N., Massar S., Pironio S., Popescu S., Roberts D.: Nonlocal correlations as an information theoretic resource. Phys. Rev. A 71, 022101 (2005)CrossRefADSGoogle Scholar
  13. 13.
    Schumacher, B.: Bell’s theorem and monogamy. See http://pirsa.org/08120020/ (2008)
  14. 14.
    Seevinck M.P., Uffink J.: Partial separability and entanglement criteria for multiqubit quantum states. Phys. Rev. A 78, 032101 (2008)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    Spekkens, R.: In defense of the epistemic view of quantum states: a toy theory, arXiv: quant-ph/0401052 (2004)Google Scholar
  16. 16.
    Dieks D.: Communication by EPR devices. Phys. Lett. A 92, 271 (1982)CrossRefADSGoogle Scholar
  17. 17.
    Wootters W.K., Zurek W.H.: A single quantum cannot be cloned. Nature 299, 802 (1982)CrossRefADSGoogle Scholar
  18. 18.
    Terhal B.M.: Is entanglement monogamous? IBM J. Res. & Dev. 48, 71 (2004)CrossRefGoogle Scholar
  19. 19.
    Fannes M., Lewis J.T., Verbeure A.: Symmetric states of composite systems. Lett. Math. Phys. 15, 255–260 (1988)MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Raggio G.A., Werner R.F.: Quantum statistical mechanics of general mean field theory. Helv. Phys. Acta 62, 980–1003 (1989)MathSciNetGoogle Scholar
  21. 21.
    Adesso G., Illuminati F.: Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case. Phys. Rev. Lett. 99, 150501 (2007)CrossRefPubMedADSGoogle Scholar
  22. 22.
    Ou Y.-C.: Violation of monogamy inequality for higher-dimensional objects. Phys. Rev. A 75, 034305 (2007)CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Seevinck, M.P.: Parts and wholes. PhD dissertation, Utrecht University, Utrecht, The Netherlands (2008). See http://arXiv.org/abs/0811.1027 (2008)
  24. 24.
    Bell, J.S.: The theory of local beables, Epistemol. Lett. 9, March 1976. Reprinted in Dialectica 39, 85 (1985)Google Scholar
  25. 25.
    Svetlichny G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Seevinck M.P., Svetlichny G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)CrossRefPubMedMathSciNetADSGoogle Scholar
  27. 27.
    Terhal B., Doherty A.C., Schwab D.: Symmetric extensions of quantum states and local hidden variable theories. Phys. Rev. Lett 90, 157903 (2003)CrossRefPubMedMathSciNetADSGoogle Scholar
  28. 28.
    Werner R.F.: An application of Bell’s inequalities to a quantum state extension problem. Lett. Math. Phys. 17, 359 (1989)MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Pawłowski M., Brukner Č.: Monogamy of Bell’s inequality violations in nonsignalling theories. Phys. Rev. Lett. 102, 030403 (2009)CrossRefPubMedMathSciNetADSGoogle Scholar
  30. 30.
    Krenn G., Svozil K.: Stronger-than-quantum correlations. Found. Phys. 28, 971 (1998)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Scarani V., Gisin N.: Quantum communication between N partners and Bell’s inequalities. Phys. Rev. Lett. 87, 117901 (2001)CrossRefPubMedADSGoogle Scholar
  32. 32.
    Cirel’son B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93 (1980)CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Uffink J., Seevinck M.P.: Strengthened Bell inequalities for orthogonal spin directions. Phys. Lett. A. 372, 1205 (2008)CrossRefMathSciNetADSGoogle Scholar
  34. 34.
    Dieks D.: Inequalities that test locality in quantum mechanics. Phys. Rev. A. 66, 062104 (2002)CrossRefMathSciNetADSGoogle Scholar
  35. 35.
    Masanes, L.: Asymptotic violation of bell inequalities and distillability, Phys. Rev. Lett. 97, 050503 (2006). See also: Masanes, L.: Extremal quantum correlations for N parties with two dichotomic observables per site. http://arXiv.org/abs/quant-ph/0512100 (2005)Google Scholar
  36. 36.
    Collins D., Gisin N.: A relevant two qubit Bell inequality inequivalent to the CHSH inequality. J. Phys. A 37, 1775 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Seevinck M.P.: Classification and monogamy of three-qubit biseparable Bell correlations. Phys. Rev. A 76, 012106 (2007)CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Acín A., Gisin N., Masanes L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)CrossRefPubMedADSGoogle Scholar
  39. 39.
    Barrett J., Kent A., Pironio S.: Maximally nonlocal and monogamous quantum correlations. Phys. Rev. Lett. 97, 170409 (2006)CrossRefPubMedADSGoogle Scholar
  40. 40.
    Masanes, L., Renner, R., Winter, A., Barrett, J., Christandl, M.: Security of key distribution from causality constraints. http://arxiv.org/abs/quant-ph/0606049v3 (2008)
  41. 41.
    Pawłowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations, http://arxiv.org/abs/0907.3778 (2009)

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Institute for History and Foundations of ScienceUtrecht UniversityUtrechtThe Netherlands
  2. 2.Centre for Time, Philosophy DepartmentUniversity of SydneySydneyAustralia

Personalised recommendations