Advertisement

Equation of motion for entanglement

  • Markus Tiersch
  • Fernando de Melo
  • Thomas Konrad
  • Andreas Buchleitner
Article

Abstract

We review an evolution equation for quantum entanglement for 2 × 2 dimensional quantum systems, the smallest system that can exhibit entanglement, and extend it to higher dimensional systems. Furthermore, we provide statistical evidence for the equation’s applicability to the experimentally relevant domain of weakly mixed states.

Keywords

Quantum information Entanglement Open system dynamics 

PACS

03.67.-a 03.67.Mn 03.65.Yz 

References

  1. 1.
    Werner R.F.: Quantum states with Einstein–Podolski–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)CrossRefPubMedADSGoogle Scholar
  2. 2.
    Uhlmann A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Vedral V., Plenio M.B., Rippin M.A., Knight P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Gurvits, L.: Classical deterministic complexity of Edmonds’ Problem and quantum entanglement. In: Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 10–19. ACM Press (2003)Google Scholar
  5. 5.
    Konrad T., de Melo F., Tiersch M., Kasztelan C., Aragão A., Buchleitner A.: Evolution equation of quantum entanglement. Nat. Phys. 4, 99 (2008)CrossRefGoogle Scholar
  6. 6.
    Tiersch M., de Melo F., Buchleitner A.: Entanglement evolution in finite dimensions. Phys. Rev. Lett. 101, 170502 (2008)CrossRefPubMedMathSciNetADSGoogle Scholar
  7. 7.
    Zurek W.H.: Decoherence and the transition from quantum to classical—revisited. Los Alamos Sci. 27, 86 (2002)Google Scholar
  8. 8.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  9. 9.
    Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)CrossRefADSGoogle Scholar
  10. 10.
    Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)CrossRefPubMedMathSciNetADSGoogle Scholar
  11. 11.
    Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)CrossRefADSGoogle Scholar
  12. 12.
    Rungta P., Caves C.M.: Concurrence-based entanglement measures for isotropic states. Phys. Rev. A 67, 012307 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Gisin N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)CrossRefPubMedADSGoogle Scholar
  15. 15.
    Verstraete F., Dehaene J., DeMoor B.: Local filtering operations on two qubits. Phys. Rev. A 64, 010101 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Breuer H., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)Google Scholar
  17. 17.
    Choi M.: Completely positive linear maps on complex matrices. Linear Algebra Appl 10, 285 (1975)zbMATHCrossRefGoogle Scholar
  18. 18.
    Jamiołkowski A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 3, 275 (1972)zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Jiménez Farías O., Lombard Latune C., Walborn S.P., Davidovich L., Souto Ribeiro P.H.: Determining the dynamics of entanglement. Science 324, 1414 (2009)CrossRefPubMedADSGoogle Scholar
  20. 20.
    Xu, J., Li, C., Xu, X., Shi, C., Zou, X., Guo, G.: Experimental characterization of entanglement dynamics in noisy channels. arXiv:0905.3442, (2009)Google Scholar
  21. 21.
    Yu C., Yi X.X., Song H.: Evolution of entanglement for quantum mixed states. Phys. Rev. A 78, 062330 (2008)CrossRefADSGoogle Scholar
  22. 22.
    Li Z., Fei S., Wang Z.D., Liu W.M.: Evolution equation of entanglement for bipartite systems. Phys. Rev. A 79, 024303 (2009)CrossRefADSGoogle Scholar
  23. 23.
    Liu Z., Fan H.: Dynamics of the bounds of squared concurrence. Phys. Rev. A 79, 032306 (2009)CrossRefADSGoogle Scholar
  24. 24.
    Benhelm J., Kirchmair G., Roos C.F., Blatt R.: Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463 (2008)CrossRefGoogle Scholar
  25. 25.
    Wootters W.K.: Random quantum states. Found. Phys. 20, 1365 (1990)CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Gour G.: Family of concurrence monotones and its applications. Phys. Rev. A 71, 012318 (2005)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Gour G.: Mixed-state entanglement of assistance and the generalized concurrence. Phys. Rev. A 72, 042318 (2005)CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    Tiersch, M., de Melo, F., Buchleitner, A.: Universality in open system entanglement dynamics. arXiv:0810.2506 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Markus Tiersch
    • 1
  • Fernando de Melo
    • 1
  • Thomas Konrad
    • 2
  • Andreas Buchleitner
    • 1
  1. 1.Physikalisches Institut der Albert-Ludwigs-UniversitätFreiburgGermany
  2. 2.Quantum Research Group, School of PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations