Advertisement

Quantum Information Processing

, Volume 9, Issue 3, pp 385–404 | Cite as

Quantum computing algorithm for electromagnetic field simulation

  • Siddhartha Sinha
  • Peter Russer
Article

Abstract

Quantum computing offers new concepts for the simulation of complex physical systems. A quantum computing algorithm for electromagnetic field simulation is presented here. The electromagnetic field simulation is performed on the basis of the Transmission Line Matrix (TLM) method. The Hilbert space formulation of TLM allows us to obtain a time evolution operator for the TLM method, which can then be interpreted as the time evolution operator of a quantum system, thus yielding a quantum computing algorithm. Further, the quantum simulation is done within the framework of the quantum circuit model of computation. Our aim has been to address the design problem in electromagnetics—given an initial condition and a final field distribution, find the structures which satisfy these. Quantum computing offers us the possibility to solve this problem from first principles. Using quantum parallelism we simulate a large number of electromagnetic structures in parallel in time and then try to filter out the ones which have the required field distribution.

Keywords

Quantum simulation Electromagnetics Transmission line matrix Design problem 

PACS

03.67.Ac 41.20.Jb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams, D., Lloyd, S.: Nonlinear quantum mechanics implies Polynomial-Time solution for NP-Complete and #P problems. Phys. Rev. Lett. 81(18), 3992 (1998). doi: 10.1103/PhysRevLett.81.3992. http://link.aps.org/abstract/PRL/v81/p3992. Copyright (C) 2009 The American Physical Society; Please report any problems to prola@aps.org
  2. 2.
    Averin, D.: Quantum computing and quantum measurement with mesoscopic Josephson junctions. Fortschritte der Physik 48(9–11), 1055–1074 (2000). http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<1055::AID-PROP1055>3.0.CO;2-1
  3. 3.
    Barenco A.: Quantum physics and computers. Contem. Phys. 37(5), 375–389 (1996)CrossRefADSGoogle Scholar
  4. 4.
    Barenco A., Ekert A., Suominen K., Torma P.: Approximate quantum Fourier transform and decoherence. SIAM J. Comput. Phys. Rev. A 54, 139 (1994)MathSciNetADSGoogle Scholar
  5. 5.
    Berggren K.: Quantum computing with superconductors. Proc. IEEE 92(10), 1630–1638 (2004)CrossRefGoogle Scholar
  6. 6.
    Berman G.P., Ezhov A.A., Kamenev D.I., Yepez J.: Simulation of the diffusion equation on a type-II quantum computer. Phys. Rev. A 66(1), 12,310 (2002)CrossRefGoogle Scholar
  7. 7.
    Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by quantum walk. quant-ph/0209131 (2002). doi: 10.1145/780542.780552. http://arxiv.org/abs/quant-ph/0209131. Proceedings of the 35th ACM Symposium on Theory of Computing (STOC 2003), pp. 59–68
  8. 8.
    Christopoulos C.: The Transmission Line Modeling Method TLM. IEEE Press, New York (1995)CrossRefGoogle Scholar
  9. 9.
    Christopoulos, C., Russer, P.: Application of TLM to EMC problems. In: Uzunoglu, N., Kaklamani, D.I., Nikita, K.S. (eds.) Applied Computational Electromagnetics, NATO ASI Series, pp. 324–350. Springer, Berlin (2000)Google Scholar
  10. 10.
    Christopoulos, C., Russer, P.: Application of TLM to microwave circuits. In: Uzunoglu, N., Kaklamani, D.I., Nikita, K.S. (eds.) Applied Computational Electromagnetics, NATO ASI Series, pp. 300–323. Springer, Berlin (2000)Google Scholar
  11. 11.
    Coppersmith, D.: An approximate Fourier transform useful in quantum factoring. Arxiv preprint quant-ph/0201067 (2002)Google Scholar
  12. 12.
    Deutsch D.: Quantum theory, the church-turing principle and the universal quantum number. Proc. Roy. Soc. Lon. A 400, 97–117 (1985)zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    DiVincenzo, D.: Quantum computation. Science 270(5234), 255–261 (1995). doi: 10.1126/science.270.5234.255. http://www.sciencemag.org/cgi/content/abstract/270/5234/255 Google Scholar
  14. 14.
    Ekert, A., Jozsa, R., Marcer, P.: Quantum algorithms: Entanglement-Enhanced information processing [and discussion]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, pp. 1769–1782 (1998)Google Scholar
  15. 15.
    Feynman, R.: Simulating physics with computers. Int. J. Theore. Phys. 21(6), 467–488 (1982). doi: 10.1007/BF02650179. http://dx.doi.org/10.1007/BF02650179 Google Scholar
  16. 16.
    Freiser M., Marcus P.: A survey of some physical limitations on computer elements. IEEE Trans. Magn. 5(2), 82–90 (1969)CrossRefADSGoogle Scholar
  17. 17.
    Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79(23), 4709 (1997). doi: 10.1103/PhysRevLett.79.4709. http://link.aps.org/abstract/PRL/v79/p4709. Copyright (C) 2009 The American Physical Society; Please report any problems to prola@aps.orgGoogle Scholar
  18. 18.
    Grover, L.K.: Quantum computing: beyond factorization and search. Science 281(5378), 792–794 (1998). doi: 10.1126/science.281.5378.792. http://www.sciencemag.org Google Scholar
  19. 19.
    Hoefer W.J.: The transmission line matrix method-theory and applications. IEEE. Trans. Microw. Theory. Tech. 33, 882–893 (1985)CrossRefADSGoogle Scholar
  20. 20.
    Knill E.: Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)CrossRefPubMedADSGoogle Scholar
  21. 21.
    Krumpholz M., Russer P.: A field theoretical derivation TLM. IEEE. Trans. Microw. Theory. Tech. 42, 1660–1668 (1994)CrossRefADSGoogle Scholar
  22. 22.
    Krumpholz M., Russer P.: Two dimensional FDTD and TLM. Int. J. Numeri. Modell. 7, 141–153 (1994)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996). doi: 10.1126/science.273.5278.1073. http://www.sciencemag.org/cgi/content/abstract/273/5278/1073 Google Scholar
  24. 24.
    Marinescu D.C., Marinescu G.M.: Lectures on Quantum Computing. Computer Science Department, University of Central Florida, Florida (2003)Google Scholar
  25. 25.
    Meyer D.A.: Quantum computing classical physics. Philos. Trans. R. Soc. Lond. A 360, 395–405 (2002)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    Nielssen M.A., Chuang I.L.: Quantum Computation and Quantum Information. 1st edn. Cambridge University Press, Cambridge (2000)Google Scholar
  27. 27.
    Pravia M.A., Chen Z., Yepez J., Cory D.G.: Experimental demonstration of quantum lattice gas computation. Quantum Inf. Process. 2(1), 97–116 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Russer P.: Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering. 2nd edn. Artech House, Boston (2006)Google Scholar
  29. 29.
    Russer P., Krumpholz M.: The Hilbert space formulation of the TLM method. Int. J. Numeri. Modell. 6, 29–45 (1993)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, 20–22 Nov. 1994, pp. 124–134 (1994)Google Scholar
  31. 31.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. pp. 303–332 (1999)Google Scholar
  32. 32.
    Steane A.: Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998)CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Taylor, J., Lukin, M.: Dephasing of quantum bits by a Quasi-Static mesoscopic environment. Quantum Inf. Process. 5(6), 503–536 (2006). doi: 10.1007/s11128-006-0036-z. http://dx.doi.org/10.1007/s11128-006-0036-z
  34. 34.
    Yepez J.: Lattice-gas quantum computation. Int. J. Modern Phys. C-Phys. Comp. 9(8), 1587–1596 (1998)CrossRefADSGoogle Scholar
  35. 35.
    Yepez, J.: Quantum computation of fluid dynamics, Lecture Notes in Computer Science, vol. 1509, pp. 34–60. Springer, Heidelberg (1999). doi: 10.1007/3-540-49208-9-3
  36. 36.
    Yepez, J.: Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63(4), 46,702/ 1–18 (2001)Google Scholar
  37. 37.
    Yepez J.: Quantum lattice-gas model for the diffusion equation. Int. J. Modern Phys. C-Phys. Comp. 12(9), 1285–1304 (2001)CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Yepez J.: Type-II quantum computers. Int. J. Modern Phy. C-Phys. Compu. 12(9), 1273–1284 (2001)CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    Yepez J.: Quantum lattice-gas model for the burgers equation. J. Stat. Phys. 107(1/2), 203–224 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute for High Frequency EngineeringTechnische Universität MünchenMunichGermany

Personalised recommendations