Quantum Information Processing

, Volume 9, Issue 1, pp 1–11 | Cite as

Processing images in entangled quantum systems



We introduce a novel method for storing and retrieving binary geometrical shapes in quantum mechanical systems. In contrast to standard procedures in classical computer science in which image reconstruction requires not only the storage of light parameters (like light frequency) but also the storage and use of additional information like correlation and pixel spatial disposition, we show that the employment of maximally entangled qubits allows to reconstruct images without using any additional information. Moreover, we provide a concrete application of our proposal in the field of image recognition and briefly explore potential experimental realizations. Our proposal could be employed to enable emergent quantum technology to be used in high-impact scientific disciplines in which extensive use of image processing is made.


Image storage and retrieval Quantum entanglement Seevinck–Svetlichny inequalities Image segmentation 


03.67.Bg 03.67.Lx 03.67.-a 03.67.Ac 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valicenti, R.K., Dicker, A.P., Jaffray, D.A. (eds.): Image-Guided Radiation Therapy of Prostate Cancer, 312 pp. Informa HealthCare, London (2008)Google Scholar
  2. 2.
    Grover, L.K.: A fast quantum-mechanical algorithm for database search. In: Proceedings of the 28th annual ACM Symposium on Theory of Computing, Philadelphia, PA, pp. 212–219 (1996)Google Scholar
  3. 3.
    Greenberger D.M., Horne M.A., Zeilinger A.: Going beyond Bell’s theorem. In: Kafatos, M. (eds) Bell’s Theorem, Quantum Theory and Conceptions of the Universe, pp. 69–72. Kluwer, Dordrecht (1989)Google Scholar
  4. 4.
    Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    Bell J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge, UK (1989)Google Scholar
  6. 6.
    Seevinck M., Svetlichny G.: Bell-type inequalities for partial separability in N-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)CrossRefPubMedMathSciNetADSGoogle Scholar
  7. 7.
    Collins D., Gisin N., Popescu S., Roberts D., Scarani V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)CrossRefPubMedADSGoogle Scholar
  8. 8.
    Morris T.: Computer Vision and Image Processing. Palgrave MacMillan, NY, USA (2004)Google Scholar
  9. 9.
    Davies E.R.: Machine Vision: Theory, Algorithms, Practicalities (Signal Processing and its Applications). Morgan Kaufmann, San Francisco, USA (2005)Google Scholar
  10. 10.
    Goutsias J., Heijmans H.J.A.M. (eds): Mathematical Morphology. IOS Press, Amsterdam, The Netherlands (2000)Google Scholar
  11. 11.
    Häffner H., Hänsel W., Roos C.F., Benhelm J., Chek-al-kar D., Chwalla M., Körber T., Rapol U.D., Riebe M., Schmidt P.O., Becher C., Gühne O., Dür W., Blatt R.: Scalable multiparticle entanglement of trapped ions. Nature (London) 438, 643–646 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Zou X., Mathis W.: One-step implementation of maximally entangled states of many three-level atoms in microwave cavity QED. Phys. Rev. A 70, 035802 (2004)CrossRefADSGoogle Scholar
  13. 13.
    Leibfried D., Knill E., Seidelin S., Britton J., Blakestad R.B., Chiaverini J., Hume D.B., Itano W.M., Jost J.D., Langer C., Ozeri R., Reichle R., Wineland D.J.: Creation of a six-atom Schröodinger cat state. Nature (London) 438, 639–642 (2005)CrossRefADSGoogle Scholar
  14. 14.
    Wei L.F., Liu Y., Nori F.: Generation and control of Greenberg–Horne–Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006)CrossRefPubMedADSGoogle Scholar
  15. 15.
    Walther P., Aspelmeyer M., Zeilinger A.: Heralded generation of multiphoton entanglement. Phys. Rev. A 75, 012313 (2007)CrossRefADSGoogle Scholar
  16. 16.
    Fiorentino, M., Wong, F.N.C.: Deterministic controlled-not gate for two-qubit single-photon quantum logic. In: Proceedings of the Quantum Electronics Conference, IEQC, pp. 30–32 (2004)Google Scholar
  17. 17.
    Kwiat P.G.: Hyper-entangled states. J. Mod. Opt. 44(11/12), 2173–2184 (1997)MATHMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Tecnológico de Monterrey Campus Estado de MéxicoQuantum Information Processing GroupAtizapán de ZaragozaMexico
  2. 2.Centre for Quantum Computation, Clarendon LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations