Quantum Information Processing

, Volume 8, Issue 5, pp 401–413 | Cite as

Protecting quantum information with entanglement and noisy optical modes



We incorporate active and passive quantum error-correcting techniques to protect a set of optical information modes of a continuous-variable quantum information system. Our method uses ancilla modes, entangled modes, and gauge modes (modes in a mixed state) to help correct errors on a set of information modes. A linear-optical encoding circuit consisting of offline squeezers, passive optical devices, feedforward control, conditional modulation, and homodyne measurements performs the encoding. The result is that we extend the entanglement-assisted operator stabilizer formalism for discrete variables to continuous-variable quantum information processing.


Operator quantum error correction Stabilizer formalism Entanglement-assisted quantum error correction Continuous variables Linear-optical quantum computation 


03.67.-a 03.67.Hk 42.50.Dv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aly, S.A., Klappenecker, A.: Subsystem code constructions. In: Proceedings of the IEEE International Symposium on Information Theory (arXiv:0712.4321), pp. 369–373 (2008)Google Scholar
  2. 2.
    Ban M.: Quantum dense coding via a two-mode squeezed-vacuum state. J. Opt. B: Quantum Semiclass. Opt. 1, L1–L9 (1999)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Barnes, R.: Stabilizer codes for continuous-variable quantum error correction. arXiv:quant-ph/0405064 (2004)Google Scholar
  4. 4.
    Bény, C., Kempf, A., Kribs, D.W.: Quantum error correction on infinite-dimensional hilbert spaces. arXiv:0811.0421 (2008)Google Scholar
  5. 5.
    Braunstein S.L.: Error correction for continuous quantum variables. Phys. Rev. Let. 80(18), 4084 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Braunstein S.L.: Quantum error correction for communication with linear optics. Nature 394, 47–49 (1998)CrossRefADSGoogle Scholar
  7. 7.
    Braunstein S.L.: Squeezing as an irreducible resource. Phys. Rev. A 71(5), 055801 (2005)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Braunstein S.L., Kimble H.J.: Teleportation of continuous quantum variables. Phys. Rev. Let. 80, 869–872 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Braunstein S.L., Kimble H.J.: Dense coding for continuous variables. Phys. Rev. A 61, 042, 302 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Braunstein S.L., van Loock P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Braunstein, S.L., Pati, A. (eds.): Quantum Information with Continuous Variables. Springer (2003)Google Scholar
  12. 12.
    Brun, T., Devetak, I., Hsieh, M.H.: General entanglement-assisted quantum error-correcting codes. In: IEEE International Symposium on Information Theory, pp. 2101–2105 (2007)Google Scholar
  13. 13.
    Brun, T.A., Devetak, I., Hsieh, M.H.: Catalytic quantum error correction. arXiv:quant-ph/0608027 (2006)Google Scholar
  14. 14.
    Brun T.A., Devetak I., Hsieh M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)PubMedCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Calderbank A., Rains E., Shor P., Sloane N.: Quantum error correction via codes over gf(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Let. 78(3), 405–408 (1997). doi: 10.1103/PhysRevLett.78.405 CrossRefADSMathSciNetMATHGoogle Scholar
  17. 17.
    Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996). doi: 10.1103/PhysRevA.54.1098 PubMedCrossRefADSGoogle Scholar
  18. 18.
    Filip R., Marek P., Andersen U.L.: Measurement-induced continuous-variable quantum interactions. Phys. Rev. A 71(4), 042308 (2005)CrossRefADSGoogle Scholar
  19. 19.
    Furusawa A., Srensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)PubMedCrossRefADSGoogle Scholar
  20. 20.
    Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institue of Technology (1997)Google Scholar
  21. 21.
    Gottesman D., Kitaev A., Preskill J.: Encoding a qubit in an oscillator. Phys. Rev. A 64(1), 012, 310 (2001). doi: 10.1103/PhysRevA.64.012310 CrossRefGoogle Scholar
  22. 22.
    Hsieh M.H., Devetak I., Brun T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76(6), 062313 (2007). doi: 10.1103/PhysRevA.76.062313 CrossRefADSGoogle Scholar
  23. 23.
    Knill E., Laflamme R., Viola L.: Theory of quantum error correction for general noise. Phys. Rev. Let. 84(11), 2525–2528 (2000). doi: 10.1103/PhysRevLett.84.2525 CrossRefADSMathSciNetMATHGoogle Scholar
  24. 24.
    Kribs D., Laflamme R., Poulin D.: Unified and generalized approach to quantum error correction. Phys. Rev. Let. 94(18), 180501 (2005). doi: 10.1103/PhysRevLett.94.180501 CrossRefADSGoogle Scholar
  25. 25.
    Kribs D.W., Laflamme R., Poulin D., Lesosky M.: Operator quantum error correction. Quant. Inf. Comp. 6, 383–399 (2006)MathSciNetGoogle Scholar
  26. 26.
    Kribs D.W., Spekkens R.W.: Quantum error-correcting subsystems are unitarily recoverable subsystems. Phys. Rev. A 74(4), 042329 (2006). doi: 10.1103/PhysRevA.74.042329 CrossRefADSGoogle Scholar
  27. 27.
    Li X., Pan Q., Jing J., Zhang J., Xie C., Peng K.: Quantum dense coding exploiting a bright einstein-podolsky-rosen beam. Phys. Rev. Let. 88(4), 047, 904 (2002). doi: 10.1103/PhysRevLett.88.047904 Google Scholar
  28. 28.
    Lidar D.A., Chuang I.L., Whaley K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Let. 81(12), 2594–2597 (1998). doi: 10.1103/PhysRevLett.81.2594 CrossRefADSGoogle Scholar
  29. 29.
    Lloyd S., Slotine J.J.E.: Analog quantum error correction. Phys. Rev. Let. 80(18), 4088–4091 (1998). doi: 10.1103/PhysRevLett.80.4088 CrossRefADSGoogle Scholar
  30. 30.
    Mizuno J., Wakui K., Furusawa A., Sasaki M.: Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A 71(1), 012304 (2005)CrossRefADSGoogle Scholar
  31. 31.
    Nielsen M.A., Poulin D.: Algebraic and information-theoretic conditions for operator quantum error correction. Phys. Rev. A 75(6), 064304 (2007). doi: 10.1103/PhysRevA.75.064304 CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Niset J., Andersen U.L., Cerf N.J.: Experimentally feasible quantum erasure-correcting code for continuous variables. Phys. Rev. Let. 101(13), 130503 (2008). doi: 10.1103/PhysRevLett.101.130503 CrossRefADSGoogle Scholar
  33. 33.
    Poulin D.: Stabilizer formalism for operator quantum error correction. Phys. Rev. Let. 95(23), 230504 (2005). doi: 10.1103/PhysRevLett.95.230504 CrossRefADSGoogle Scholar
  34. 34.
    Shor P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493–R2496 (1995). doi: 10.1103/PhysRevA.52.R2493 PubMedCrossRefADSGoogle Scholar
  35. 35.
    Steane A.M.: Error correcting codes in quantum theory. Phys. Rev. Let. 77(5), 793–797 (1996). doi: 10.1103/PhysRevLett.77.793 CrossRefADSMathSciNetMATHGoogle Scholar
  36. 36.
    Vaidman L.: Teleportation of quantum states. Phys. Rev. A 49(2), 1473–1476 (1994). doi: 10.1103/PhysRevA.49.1473 PubMedCrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Wilde, M.M., Brun, T.A.: Entanglement-assisted quantum convolutional coding. arXiv:0712.2223 (2007)Google Scholar
  38. 38.
    Wilde M.M., Brun T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064,302 (2008)Google Scholar
  39. 39.
    Wilde M.M., Brun T.A., Dowling J.P., Lee H.: Coherent communication with linear optics. Phys. Rev. A 77, 022,321 (2007)Google Scholar
  40. 40.
    Wilde M.M., Krovi H., Brun T.A.: Coherent communication with continuous quantum variables. Phys. Rev. A 75(6), 060303 (2007). doi: 10.1103/PhysRevA.75.060303 CrossRefADSMathSciNetGoogle Scholar
  41. 41.
    Wilde, M.M., Krovi, H., Brun, T.A.: Convolutional entanglement distillation. arXiv:0708.3699 (2007)Google Scholar
  42. 42.
    Wilde M.M., Krovi H., Brun T.A.: Entanglement-assisted quantum error correction with linear optics. Phys. Rev. A 76, 052,308 (2007)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Yoshikawa J.I., Hayashi T., Akiyama T., Takei N., Huck A., Andersen U.L., Furusawa A.: Demonstration of deterministic and high fidelity squeezing of quantum information. Phys. Rev. A 76(6), 060301 (2007). doi: 10.1103/PhysRevA.76.060301 CrossRefADSGoogle Scholar
  44. 44.
    Yoshikawa J.I., Miwa Y., Huck A., Andersen U.L., van Loock P., Furusawa A.: Demonstration of a quantum nondemolition sum gate. Phys. Rev. Let. 101(25), 250501 (2008). doi: 10.1103/PhysRevLett.101.250501 CrossRefADSGoogle Scholar
  45. 45.
    Zanardi P., Rasetti M.: Error avoiding quantum codes. Mod. Phys. Lett. B 11, 1085–1093 (1997)CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    Zanardi P., Rasetti M.: Noiseless quantum codes. Phys. Rev. Let. 79(17), 3306–3309 (1997). doi: 10.1103/PhysRevLett.79.3306 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Communication Sciences Institute, Center for Quantum Information Science and Technology, Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations