Quantum Information Processing

, Volume 8, Issue 2–3, pp 261–281 | Cite as

Large-amplitude driving of a superconducting artificial atom

Interferometry, cooling, and amplitude spectroscopy
Article

Abstract

Superconducting persistent-current qubits are quantum-coherent artificial atoms with multiple, tunable energy levels. In the presence of large-amplitude harmonic excitation, the qubit state can be driven through one or more of the constituent energy-level avoided crossings. The resulting Landau–Zener–Stückelberg (LZS) transitions mediate a rich array of quantum-coherent phenomena. We review here three experimental works based on LZS transitions: Mach–Zehnder-type interferometry between repeated LZS transitions, microwave-induced cooling, and amplitude spectroscopy. These experiments exhibit a remarkable agreement with theory, and are extensible to other solid-state and atomic qubit modalities. We anticipate they will find application to qubit state-preparation and control methods for quantum information science and technology.

Keywords

Landau–Zener Stückelberg Artificial atom Interferometry Cooling Amplitude spectroscopy 

PACS

03.67.Lx 03.65.Yz 07.60.Ly 39.25.+k 85.25.Cp 85.25.Dq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke J., Cleland A.N., Devoret M.H., Esteve D., Martinis J.H.: Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992–997 (1988)CrossRefADSGoogle Scholar
  2. 2.
    Clarke J., Wilhelm F.K.: Superconducting quantum bits. Nature 453, 1031–1042 (2008)CrossRefADSGoogle Scholar
  3. 3.
    Mooij J.E., Orlando T.P., Levitov L.S., Tian L., van der Wal C.H., Lloyd S.: Josephson persistent-current qubit. Science 285, 1036–1039 (1999)CrossRefGoogle Scholar
  4. 4.
    Orlando T.P., Mooij J.E., Tian L., van der Wal C.H., Levitov L.S., Lloyd S., Mazo J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Oliver W.D., Yu Y., Lee J.C., Berggren K.K., Levitov L.S., Orlando T.P.: Mach–Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653–1657 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Berns D.M., Oliver W.D., Valenzuela S.O., Shytov A.V., Berggren K.K., Levitov L.S., Orlando T.P.: Coherent quasiclassical dynamics of a persistent current qubit. Phys. Rev. Lett. 97, 150502 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Valenzuela S.O., Oliver W.D., Berns D.M., Berggren K.K., Levitov L.S., Orlando T.P.: Microwave-induced cooling of a superconducting qubit. Science 314, 1589–1592 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Berns D.M., Rudner M.S., Valenzuela S.O., Berggren K.K., Oliver W.D., Levitov L.S., Orlando T.P.: Amplitude spectroscopy of a solid-state artificial atom. Nature 455, 51–57 (2008)CrossRefADSGoogle Scholar
  9. 9.
    Rudner M.S., Shytov A.V., Levitov L.S., Berns D.M., Oliver W.D., Valenzuela S.O., Orlando T.P.: Quantum phase tomography of a strongly driven qubit. Phys. Rev. Lett. 101, 190502 (2008)CrossRefADSGoogle Scholar
  10. 10.
    Friedman J.R., Patel V., Chen W., Tolpygo S.K., Lukens J.E.: Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000)CrossRefADSGoogle Scholar
  11. 11.
    van der Wal C.H., ter Haar A.C.J., Wilhelm F.K., Schouten R.N., Harmans C.J.P.M., Orlando T.P., Lloyd S., Mooij J.E.: Quantum superposition of macroscopic persistent-current states. Science 290, 773–777 (2000)CrossRefADSGoogle Scholar
  12. 12.
    Berkley A.J., Xu H., Ramos R.C., Gubrud M.A., Strauch F.W., Johnson P.R., Anderson J.R., Dragt A.J., Lobb C.J., Wellstood F.C.: Entangled macroscopic quantum states in two superconducting qubits. Science 300, 1548–1550 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Nakamura Y., Pashkin Y.A., Tsai J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Nakamura Y., Pashkin Y.A., Tsai J.S.: Rabi oscillations in a large Josephson-junction charge two-level system. Phys. Rev. Lett. 87, 246601 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)CrossRefADSGoogle Scholar
  16. 16.
    Yu Y., Han S., Chu X., Chu S.-I., Wang Z.: Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889–892 (2002)CrossRefADSGoogle Scholar
  17. 17.
    Martinis J.M., Nam S., Aumentado J., Urbina C.: Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Chiorescu I., Nakamura Y., Harmans C.J.P.M., Mooij J.E.: Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003)CrossRefADSGoogle Scholar
  19. 19.
    Claudon J., Balestro F., Hekking F.W.J., Buisson O.: Coherent oscillations in a superconducting multilevel quantum system. Phys. Rev. Lett. 93, 187003 (2004)CrossRefADSGoogle Scholar
  20. 20.
    Plourde B.L.T., Robertson T.L., Reichardt P.A., Hime T., Linzen S., Wu C.-E., Clarke J.: Flux qubits and readout device with two independent flux lines. Phys. Rev. B 72, 060506(R) (2005)CrossRefADSGoogle Scholar
  21. 21.
    Saito S., Meno T., Ueda M., Tanaka H., Semba K., Takayanagi H.: Parametric control of a superconducting flux qubit. Phys. Rev. Lett. 96, 107001 (2006)CrossRefADSGoogle Scholar
  22. 22.
    Lisenfeld J., Lukashenko A., Ansmann M., Martinis J.M., Ustinov A.V.: Temperature dependence of coherent oscillations in josephson phase qubits. Phys. Rev. Lett. 99, 170504 (2007)CrossRefADSGoogle Scholar
  23. 23.
    Izmalkov A., Grajcar M., Il’ichev E., Oukhanski N., Wagner Th., Meyer H.-G., Krech W., Amin M.H.S., Maassen van den Brink A., Zagoskin A.M.: Observation of macroscopic Landau–Zener transitions in a superconducting device. Europhys. Lett. 65, 844–849 (2004)CrossRefADSGoogle Scholar
  24. 24.
    Sillanpaa M., Lehtinen T., Paila A., Makhlin Yu., Hakonen P.: Continuous-time monitoring of Landau–Zener interference in a Cooper-pair box. Phys. Rev. Lett. 96, 187002 (2006)CrossRefADSGoogle Scholar
  25. 25.
    Wilson C.M., Duty T., Persson F., Sandberg M., Johansson G., Delsing P.: Coherent times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003 (2007)CrossRefADSGoogle Scholar
  26. 26.
    Izmalkov A., van der Ploeg S.J.W., Shevchenko S.N., Grajcar M., Il’ichev E., Hübner U., Omelyanchouk A.N., Meyer H.-G.: Consistency of ground state and spectroscopic measurements on flux qubits. Phys. Rev. Lett. 101, 017003 (2008)CrossRefADSGoogle Scholar
  27. 27.
    Niskanen A.O., Nakamura Y., Pekola J.P.: Information entropic superconducting microcooler. Phys. Rev. B 76, 174523 (2007)CrossRefADSGoogle Scholar
  28. 28.
    You J.Q., Liu Y.-x., Nori F.: Simultaneous cooling of an artificial atom and its neighboring quantum system. Phys. Rev. Lett. 100, 047001 (2008)CrossRefADSGoogle Scholar
  29. 29.
    Grajcar M., van der Ploeg S.H.W., Izmalkov A., Il’ichev E., Meyer H.-G., Fedorov A., Shnirman A., Schön G.: Sisyphus cooling and amplification by a superconducting qubit. Nat. Phys. 4, 612–616 (2008)CrossRefGoogle Scholar
  30. 30.
    Murali K.V.R.M., Dutton Z., Oliver W.D., Crankshaw D.S., Orlando T.P.: Probing decoherence with electromagnetically induced transparency in superconductive quantum circuits. Phys. Rev. Lett. 93, 087003 (2004)CrossRefADSGoogle Scholar
  31. 31.
    Dutton Z., Murali K.V.R.M., Oliver W.D., Orlando T.P.: Electromagnetically induced transparency in superconducting quantum circuits: effects of decoherence, tunneling, and multilevel crosstalk. Phys. Rev. B 73, 104516 (2006)CrossRefADSGoogle Scholar
  32. 32.
    Leek P.J., Fink J.M., Blais A., Bianchetti R., Goppl M., Gambetta J.M., Schuster D.I., Frunzio L., Schoelkopf R.J., Wallraff A.: Observation of Berry’s phase in a solid-state qubit. Science 318, 1889–1892 (2007)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    Chiorescu I., Bertet P., Semba K., Nakamura Y., Harmans C.J.P.M., Mooij J.E.: Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159–162 (2004)CrossRefADSGoogle Scholar
  34. 34.
    Wallraff A., Schuster D.I., Blais A., Frunzio L., Huang R.-S., Majer J., Kumar S., Girvin S.M., Schoelkopf R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)CrossRefADSGoogle Scholar
  35. 35.
    Johansson J., Saito S., Meno T., Nakano H., Ueda M., Tanaka H., Semba K., Takayanagi H.: Vacuum rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006)CrossRefADSGoogle Scholar
  36. 36.
    Deppe F., Mariantoni M., Menzel E.P., Marx A., Saito S., Kakuyanagi K., Tanaka H., Menon T., Semba K., Takayanagi H., Solano E., Gross R.: Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED. Nat. Phys. 4, 686–691 (2008)CrossRefGoogle Scholar
  37. 37.
    Fink J.M., Goppl M., Baur M., Bianchetti R., Leek P.J., Blais A., Wallraff A.: Climbing the Jaynes-Cummings ladder and observing its root n nonlinearity in a cavity QED system. Nature 454, 315–318 (2008)CrossRefADSGoogle Scholar
  38. 38.
    Fragner A., Goppl M., Fink J.M., Baur M., Bianchetti R., Leek P.J., Blais A., Wallraff A.: Resolving vacuum fluctuations in an electrical circuit by measuring the Lamb shift. Science 322, 1357–1360 (2008)CrossRefADSGoogle Scholar
  39. 39.
    Hofheinz M., Weig E.M., Ansmann M., Bialczak R.C., Lucero E., Neeley M., O’Connell A.D., Wang H., Martinis J.M., Cleland A.N.: Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008)CrossRefADSGoogle Scholar
  40. 40.
    Makhlin Y., Schön G., Shnirman A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)CrossRefADSGoogle Scholar
  41. 41.
    Mooij J.E.: The road to quantum computing. Science 307, 1210–1211 (2005)CrossRefGoogle Scholar
  42. 42.
    Hime T., Reichart P.A., Plourde B.L.T., Robertson T.L., Wu C.-E., Ustinov A.V., Clarke J.: Solid-state qubits with current-controlled coupling. Science 314, 1427–1429 (2006)CrossRefADSGoogle Scholar
  43. 43.
    van der Ploeg S.H.W., Izmalkov A., Maassen van den Brink A., Hübner U., Grajcar M., Il’ichev E., Meyer H.-G., Zagoskin A.M.: Controllable coupling of superconducting flux qubits. Phys. Rev. Lett. 98, 057004 (2007)CrossRefADSGoogle Scholar
  44. 44.
    Niskanen A.O., Harrabi K., Yoshihara F., Nakamura Y., Lloyd S., Tsai J.S.: Quantum coherent tunable coupling of superconducting qubits. Science 316, 723–726 (2007)CrossRefADSGoogle Scholar
  45. 45.
    Kerman A.J., Oliver W.D.: High-fidelity quantum operations on superconducting qubits in the presence of noise. Phys. Rev. Lett. 101, 070501 (2008)CrossRefADSGoogle Scholar
  46. 46.
    Sillanpaa M.A., Park J.I., Simmonds R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)CrossRefADSGoogle Scholar
  47. 47.
    Majer J., Chow J.M., Gambetta J.M., Koch J., Johnson B.R., Schreier J.A., Frunzio L., Schuster D.I., Houck A.A., Wallraff A., Blais A., Devoret M.H., Girvin S.M., Schoelkopf R.J.: Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)CrossRefADSGoogle Scholar
  48. 48.
    Pashkin Y.A., Yamamoto T., Astafiev O., Nakamura Y., Averin D.V., Tsai J.S.: Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003)CrossRefADSGoogle Scholar
  49. 49.
    Yamamoto T., Pashkin Yu.A., Astafiev O., Nakamura Y., Tsai J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941–944 (2003)CrossRefADSGoogle Scholar
  50. 50.
    McDermott R., Simmonds R.W., Steffen M., Cooper K.B., Cicak K., Osborn K.D., Oh S., Pappas D.P., Martinis J.M.: Simultaneous state measurement of coupled Josephson phase qubits. Science 307, 1299–1302 (2005)CrossRefADSGoogle Scholar
  51. 51.
    Plantenberg J.H., de Groot P.C., Harmans C.J.P.M., Mooij J.E.: Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature 447, 836–839 (2007)CrossRefADSGoogle Scholar
  52. 52.
    Steffen M., Ansmann A., Bialczak R.C., Katz N., Lucero E., McDermott R., Neeley M., Weig E.M., Cleland A.N., Martinis J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Steffen M., Ansmann A., McDermott R., Katz N., Bialczak R.C., Lucero E., Neeley M., Weig E.M., Cleland A.N., Martinis J.M.: State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006)CrossRefADSGoogle Scholar
  54. 54.
    Neeley M., Ansmann M., Bialczak R.C., Hofheinz M., Katz N., Lucero E., O’Connell A., Wang H., Cleland A.N., Martinis J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008)CrossRefGoogle Scholar
  55. 55.
    Siddiqi I. et al.: RF-driven Josephson bifurcation amplifier for quantum measurement. Phys. Rev. Lett. 93, 207002 (2004)CrossRefADSGoogle Scholar
  56. 56.
    Katz N., Ansmann M., Bialczak R.C., Lucero E., McDermott R., Neeley M., Steffen M., Weig E.M., Cleland A.N., Martinis J.M., Korotkov A.N.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498–1500 (2006)CrossRefADSGoogle Scholar
  57. 57.
    Lupascu A., Saito S., Picot T., de Groot P.C., Harmans C.J.P.M., Mooij J.E.: Quantum non-demolition measurement of a superconducting two-level system. Nat. Phys. 3, 119 (2007)CrossRefGoogle Scholar
  58. 58.
    Yamamoto T., Inomata K., Watanabe M., Matsuba K., Miyazaki T., Oliver W.D., Nakamura Y., Tsai J.S.: Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008)CrossRefADSGoogle Scholar
  59. 59.
    Castellanos-Beltran M.A., Irwin K.D., Hilton G.C., Vale L.R., Lehnert K.W.: Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929–931 (2008)CrossRefGoogle Scholar
  60. 60.
    Naaman O., Aumentado J., Friedland L., Wurtele J.S., Siddiqi I.: Phase-locking transition in a chirped superconducting Josephson resonator. Phys. Rev. Lett. 101, 117005 (2008)CrossRefADSGoogle Scholar
  61. 61.
    Lee J.C., Oliver W.D., Orlando T.P., Berggren K.K.: Resonant readout of a persistent current qubit. IEEE Trans. Appl. Supercond. 15, 841–844 (2005)CrossRefGoogle Scholar
  62. 62.
    Lee J.C., Oliver W.D., Berggren K.K., Orlando T.P.: Nonlinear resonant behavior of a dispersive readout circuit for a superconducting flux qubit. Phys. Rev. B 75, 144505 (2007)CrossRefADSGoogle Scholar
  63. 63.
    Landau L.D.: On the theory of transfer of energy at collisions II. Phys. Z. USSR 2, 46–51 (1932)MATHGoogle Scholar
  64. 64.
    Zener C.: Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A 137, 696–702 (1932)MATHCrossRefGoogle Scholar
  65. 65.
    Stueckelberg E.C.G.: Theorie der un elastischen Stösse zwischen Atomen. Helv. Phys. Acta 5, 369–422 (1932)MATHGoogle Scholar
  66. 66.
    Nakamura H.: Nonadiabatic Transition. World Scientific, London, England (2001)Google Scholar
  67. 67.
    Grifoni M., Hänggi P.: Driven quantum tunneling. Phys. Rep. 304, 229–354 (1998)CrossRefMathSciNetGoogle Scholar
  68. 68.
    Kayanuma Y.: Phase coherence and nonadiabatic transition at a level crossing in a periodically driven two-level system. Phys. Rev. B 47, 9940–9943 (1993)CrossRefADSGoogle Scholar
  69. 69.
    Kayanuma Y.: Role of phase coherence in the transition dynamics of a periodically driven two-level system. Phys. Rev. B 50, 843–845 (1994)ADSGoogle Scholar
  70. 70.
    Kayanuma Y.: Stokes phase and geometrical phase in a driven two-level system. Phys. Rev. A 55, R2495–R2498 (1997)CrossRefADSGoogle Scholar
  71. 71.
    Kayanuma Y., Mizumoto Y.: Landau–Zener transitions in a level-crossing system with periodic modulation of the diagonal energy. Phys. Rev. A 62, 061401(R) (2000)CrossRefADSGoogle Scholar
  72. 72.
    Shytov A.V., Ivanov D.A., Feigel’man M.V.: Landau–Zener interferometry for qubits. Eur. Phys. J. B 36, 263–269 (2003)CrossRefADSGoogle Scholar
  73. 73.
    Ashhab S., Johansson J.R., Zagoskin A.M., Nori F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007)CrossRefADSGoogle Scholar
  74. 74.
    Wubs M., Saito K., Kohler S., Hänggi P., Kayanuma Y.: Gauging a quantum heat bath with dissipative Landau–Zener transitions. Phys. Rev. Lett. 97, 200404 (2006)CrossRefADSGoogle Scholar
  75. 75.
    Saito K., Wubs M., Kohler S., Hänggi P., Kayanuma Y.: Quantum state preparation in circuit QED via Landau–Zener tunneling. Europhys. Lett. 76, 22–28 (2006)CrossRefADSGoogle Scholar
  76. 76.
    Saito K., Wubs M., Kohler S., Kayanuma Y., Hänggi P.: Dissipative Landau–Zener transitions of a qubit: bath-specific and universal behavior. Phys. Rev. B 75, 214308 (2007)CrossRefADSGoogle Scholar
  77. 77.
    van der Wiel W.G. et al.: Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2003)CrossRefGoogle Scholar
  78. 78.
    Hanson R., Kouwenhoven L.P., Petta J.R., Tarucha S., Vandersypen L.M.K.: Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)CrossRefADSGoogle Scholar
  79. 79.
    Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-Photon Interactions: Basic Processes and Applications, Chap. 6. Wiley (1992)Google Scholar
  80. 80.
    Friedman F.R. et al.: Macroscopic measurement of resonant magnetization tunnelling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996)CrossRefADSGoogle Scholar
  81. 81.
    Thomas L. et al.: Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996)CrossRefADSGoogle Scholar
  82. 82.
    Wernsdorfer W., Sessoli R.: Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999)CrossRefADSGoogle Scholar
  83. 83.
    Baruch M.C., Gallagher T.F.: Ramsey interference fringes in single pulse microwave multiphoton transitions. Phys. Rev. Lett. 68, 3515–3518 (1992)CrossRefADSGoogle Scholar
  84. 84.
    Yoakum S., Sirko L., Koch P.M.: Stückelberg oscillations in the multiphoton excitation of helium Rydberg atoms: observation with a pulse of coherent, field and suppression by additive noise. Phys. Rev. Lett. 69, 1919–1922 (1992)CrossRefADSGoogle Scholar
  85. 85.
    Mark M., Kraemer T., Waldburger P., Herbig J., Chin C., Nägerl H.-C., Grimm R.: Stückelberg interferometry with ultracold molecules. Phys. Rev. Lett. 99, 113201 (2007)CrossRefADSGoogle Scholar
  86. 86.
    Mark M., Ferlaino F., Knoop S., Danzl J.G., Kraemer T., Chin C., Nägerl H.-C., Grimm R.: Spectroscopy of ultracold trapped cesium Feshbach molecules. Phys. Rev. A 76, 042514 (2007)CrossRefADSGoogle Scholar
  87. 87.
    Lang F., Straten P.V.D., Brandstätter B., Thalhammer G., Winkler K., Julienne P.S., Grimm R., Hecker Denschlag J.: Cruising through molecular bound-state manifolds with radiofrequency. Nat. Phys. 4, 223–226 (2008)CrossRefGoogle Scholar
  88. 88.
    Tien P.K., Gordon J.P.: Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev. 129, 647 (1963)CrossRefADSGoogle Scholar
  89. 89.
    Kouwenhoven L.P., Jauhar S., Orenstein J., McEuen P.L., Nagamune Y., Motohisa J., Sakaki H.: Observation of photon-assisted tunneling through a quantum dot. Phys. Rev. Lett. 73, 3443 (1994)CrossRefADSGoogle Scholar
  90. 90.
    Nakamura Y., Tsai J.S.: A coherent two-level system in a superconducting single-electron transistor observed through photon-assisted cooper-pair tunneling. J. Supercond. 12, 799 (1999)CrossRefGoogle Scholar
  91. 91.
    Grossmann F., Dittrich T., Jung P., Hänggi P.: Coherent destruction of tunneling. Phys. Rev. Lett. 67, 516–519 (1991)CrossRefADSGoogle Scholar
  92. 92.
    Gomez Llorente J.M., Plata J.: Tunneling control in a two-level system. Phys. Rev. A 45, R6958–R6961 (1992)CrossRefADSGoogle Scholar
  93. 93.
    Kayanuma Y., Saito K.: Coherent destruction of tunneling, dynamic localization, and the Landau–Zener formula. Phys. Rev. A 77, 010101(R) (2008)CrossRefADSGoogle Scholar
  94. 94.
    Astafiev O., Inomata K., Niskanen A.O., Yamamoto T., Pashkin Yu.A., Nakamura Y., Tsai J.S.: Single artificial-atom lasing. Nature 449, 588–590 (2007)CrossRefADSGoogle Scholar
  95. 95.
    Schawlow A.L.: Spectroscopy in a new light. Rev. Mod. Phys. 54, 697–707 (1982)CrossRefADSGoogle Scholar
  96. 96.
    Thompson R.C.: High resolution laser spectroscopy of atomic systems. Rep. Prog. Phys. 48, 531–578 (1985)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.MIT Lincoln Laboratory and the MIT Research Laboratory of ElectronicsCambridgeUSA
  2. 2.MIT Francis Bitter LaboratoryCambridgeUSA
  3. 3.ICREA and CIN2 (CSIC-ICN)BarcelonaSpain

Personalised recommendations