Quantum Information Processing

, Volume 8, Issue 2–3, pp 245–259 | Cite as

Interband transitions and interference effects in superconducting qubits

  • Antti Paila
  • Jani Tuorila
  • Mika Sillanpää
  • David Gunnarsson
  • Jayanta Sarkar
  • Yuriy Makhlin
  • Erkki Thuneberg
  • Pertti Hakonen


We investigate phase-sensitive interference effects in a periodically sin(2π f rf t)-driven, artificial two-state system connected to a microwave resonator at f LC ≃ 800 MHz. We observe two kinds of multiphoton transitions in the two-state system, accompanied by: (1) Several quanta from the drive at f rf and (2) one quantum at f rf and several at f LC . The former are described using phase-sensitive Landau–Zener transitions, while the latter are discussed in terms of vibronic transitions in diatomic molecules. Interference effects in the vibronic transitions governed by Franck–Condon coefficients are also considered.


Landau–Zener tunneling Superconducting qubits Multiphoton transitions Franck–Condon physics Aharonov–Anandan phase 


85.25.Cp 73.23.Hk 85.35.Gv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shytov A.V., Ivanov D.A., Feigel’man M.V.: Landau–Zener interferometry for qubits. Eur. Phys. J. B 36, 263 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Shevchenko S.N., Kiyko A.S., Omelyanchouk A., Krech W.: Dynamic behaviour of Josephson-junction qubits: crossover between Rabi oscillations and Landau-Zener transitions. Low Temp. Phys. 31, 569 (2005) cond-mat/0412588CrossRefADSGoogle Scholar
  3. 3.
    Oliver W., Yu Y., Lee J., Berggren K., Levitov L., Orlando T.: Mach–Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Sillanpää M., Lehtinen T., Paila A., Makhlin Y., Hakonen P.: Continuous-time monitoring of Landau–Zener interference in a Cooper-pair box. Phys. Rev. Lett. 96(18), 187002 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Berns D.M., Oliver W.D., Valenzuela S.O., Shytov A.V., Berggren K.K., Levitov L.S., Orlando T.P.: Coherent quasiclassical dynamics of a persistent current qubit. Phys. Rev. Lett. 97(15), 150502 (2006)CrossRefADSGoogle Scholar
  6. 6.
    Wilson C.M., Duty T., Persson F., Sandberg M., Johansson G., Delsing P.: Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98(25), 257003 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Landau L.: Zur Theorie der Energienbertragung II. Phys. Z. Sowjet. 2, 46 (1932)zbMATHGoogle Scholar
  8. 8.
    Zener C.: Nonadiabtic crossing of energy levels. Proc. Roy. Soc. (London) A 137, 696 (1932)zbMATHCrossRefGoogle Scholar
  9. 9.
    Stueckelberg E.C.G.: Theorie der unelastischen Stösse zwischen Atomen. Helv. Phys. Acta 5, 369 (1932)zbMATHGoogle Scholar
  10. 10.
    Ji Y., Chung Y., Sprinzak D., Heiblum M., Mahalu D., Shtrikman H.: An electronic Mach–Zehnder interferometer. Nature 422, 415 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Majorana E.: Atomi orientati in campo magnetico variable. Nuovo Cimento 9, 43 (1932)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gunnarsson D., Tuorila J., Paila A., Sarkar J., Thuneberg E., Makhlin Y., Hakonen P.: Vibronic spectroscopy of an artificial molecule. Phys. Rev. Lett. 101, 256806 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Wheeler J.A.: Franck–Condon effect and squeezed-state physics as double-source interference phenomena. Lett. Math. Phys. 10, 201 (1985)CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Wallraff A., Schuster D., Blais L.F.A., Huang R.S., Majer J., Kumar S., Girvin S.M., Schoelkopf R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Nakamura Y., Yu.A. Pashkin, Tsai J.S.: Rabi oscillations in a Josephson-junction charge two-level system. Phys. Rev. Lett. 87, 246601 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Saito S., Thorwart M., Tanaka H., Ueda M., Nakano H., Semba K., Takayanagi H.: Multiphoton transitions in a macroscopic quantum two-state system. Phys. Rev. Lett. 93(3), 037001 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Law C.K.: Resonance response of the quantum vacuum to an oscillating boundary. Phys. Rev. Lett. 73(14), 1931 (1994)CrossRefADSGoogle Scholar
  18. 18.
    Bouchiat V., Vion D., Joyez P., Esteve D., Devoret M.H.: Quantum coherence with a single Cooper pair. Phys. Scripta T76, 165 (1998)CrossRefGoogle Scholar
  19. 19.
    Nakamura Y., Pashkin Yu.A., Tsai J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Makhlin Yu., Schön G., Shnirman A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)CrossRefADSGoogle Scholar
  21. 21.
    Sillanpää M.A., Lehtinen T., Paila A., Makhlin Y., Roschier L., Hakonen P.J.: Direct observation of Josephson capacitance. Phys. Rev. Lett. 95(20), 206806 (2005)CrossRefADSGoogle Scholar
  22. 22.
    Duty T., Johansson G., Bladh K., Gunnarsson D., Wilson C., Delsing P.: Observation of quantum capacitance in the Cooper-pair transistor. Phys. Rev. Lett. 95(20), 206807 (2005)CrossRefADSGoogle Scholar
  23. 23.
    Shimshoni E., Gefen Y.: Onset of dissipation in Zener dynamics: relaxation versus dephasing. Ann. Phys. 210, 16 (1991)CrossRefADSGoogle Scholar
  24. 24.
    Kayanuma Y.: Stokes phase and geometrical phase in a driven two-level system. Phys. Rev. A 55, R2495 (1997)CrossRefADSGoogle Scholar
  25. 25.
    Wubs M., Saito K., Kohler S., Kayanuma Y., Hänggi P.: Landau–Zener transitions in qubits controlled by electromagnetic fields. New J. Phys. 7, 218 (2005)CrossRefADSGoogle Scholar
  26. 26.
    Grossmann F., Dittrich T., Jung P., Hänggi P.: Coherent destruction of tunnelling. Phys. Rev. Lett. 67, 516 (1991)CrossRefADSGoogle Scholar
  27. 27.
    Kayanuma Y.: Role of phase coherence in the transition dynamics of a periodically driven two-level system. Phys. Rev. A 50(1), 843 (1994)CrossRefADSGoogle Scholar
  28. 28.
    Sillanpää M., Lehtinen T., Paila A., Makhlin Y., Hakonen P.J.: Landau–Zener interferometry in a Cooper-pair box. J. Low Temp. Phys. 146, 253 (2007)CrossRefADSGoogle Scholar
  29. 29.
    Paila, A., Sillanpää, M., Gunnarsson, D., Makhlin, Y., Hakonen, P.: NANOPHYSICS—From Fundamentals to Applications. The Gioi (2007)Google Scholar
  30. 30.
    Ashhab S., Johansson J.R., Zagoskin A.M., Nori F.: Two-level systems driven by large-amplitude fields. Phys. Rev. A 75, 063414 (2007)CrossRefADSGoogle Scholar
  31. 31.
    Sillanpää M.A., Roschier L., Hakonen P.: Inductive single-electron transistor. Phys. Rev. Lett. 93, 066805 (2004)CrossRefADSGoogle Scholar
  32. 32.
    Roschier L., Sillanpää M., Hakonen P.: Quantum capacitive phase detector. Phys. Rev. B 71, 024530 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Sillanpää, M.A.: Quantum device applications of mesoscopic superconductivity. Ph.D. thesis, Helsinki University of Technology (2005)Google Scholar
  34. 34.
    Aharonov Y., Anandan J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58(16), 1593 (1987)CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Schleich, W.: Quantum Optics in Phase Space. Wiley-VCH (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Antti Paila
    • 1
  • Jani Tuorila
    • 2
  • Mika Sillanpää
    • 1
  • David Gunnarsson
    • 1
  • Jayanta Sarkar
    • 1
  • Yuriy Makhlin
    • 3
  • Erkki Thuneberg
    • 2
  • Pertti Hakonen
    • 1
  1. 1.Low Temperature LaboratoryHelsinki University of TechnologyTKKFinland
  2. 2.Department of Physical SciencesUniversity of OuluOuluFinland
  3. 3.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations