Quantum Information Processing

, Volume 8, Issue 2–3, pp 105–115 | Cite as

Life after charge noise: recent results with transmon qubits

  • A. A. Houck
  • Jens KochEmail author
  • M. H. Devoret
  • S. M. Girvin
  • R. J. Schoelkopf


We review the main theoretical and experimental results for the transmon, a superconducting charge qubit derived from the Cooper pair box. The increased ratio of the Josephson to charging energy results in an exponential suppression of the transmon’s sensitivity to 1/f charge noise. This has been observed experimentally and yields homogeneous broadening, negligible pure dephasing, and long coherence times of up to 3 μs. Anharmonicity of the energy spectrum is required for qubit operation, and has been proven to be sufficient in transmon devices. Transmons have been implemented in a wide array of experiments, demonstrating consistent and reproducible results in very good agreement with theory.


Superconducting qubits Transmon Quantum computation 


03.67.Lx 85.25.-j 42.50.-p 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deutsch D.: Quantum computation. Phys. World 5, 57 (1992)Google Scholar
  2. 2.
    Deutsch D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A (London) 400, 97 (1985)zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Muthukrishnan A., Stroud C.R.: Multivalued logic gates for quantum computation. Phys. Rev. A 62, 052309 (2000)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Makhlin Y., Schön G., Shnirman A.: Quantum state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)CrossRefADSGoogle Scholar
  5. 5.
    Devoret, M.H., Wallraff, A., Martinis, J.M.: Superconducting Qubits: A Short Review. cond-mat/0411174 (2004); Devoret, M.H., Martinis, J.M.: Implementing qubits with superconducting integrated circuits. Quantum Inf. Proc. 3, 163 (2004)Google Scholar
  6. 6.
    Clarke J., Wilhelm F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Koch J., Yu T.M., Gambetta J., Houck A.A., Schuster D.I., Majer J., Devoret M.H., Girvin S.M., Schoelkopf R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)CrossRefADSGoogle Scholar
  8. 8.
    Bouchiat V., Vion D., Joyez P., Esteve D., Devoret M.H.: Quantum coherence with a single Cooper pair. Phys. Scripta T76, 165 (1998)CrossRefGoogle Scholar
  9. 9.
    Nakamura Y., Pashkin Y.A., Tsai J.S.: Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature (London) 398, 786 (1999)CrossRefADSGoogle Scholar
  10. 10.
    Schuster D.I., Houck A.A., Schreier J.A., Wallraff A., Gambetta J.M., Blais A., Frunzio L., Johnson B., Devoret M.H., Girvin S.M., Schoelkopf R.J.: Resolving photon number states in a superconducting circuit. Nature 445, 515 (2007)CrossRefADSGoogle Scholar
  11. 11.
    Majer J., Chow J.M., Gambetta J.M., Koch J., Johnson B.R., Schreier J.A., Frunzio L., Schuster D.I., Houck A.A., Wallraff A., Blais A., Devoret M.H., Girvin S.M., Schoelkopf J.R.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443 (2007)CrossRefADSGoogle Scholar
  12. 12.
    Schreier J.A., Houck A.A., Koch J., Schuster D.I., Johnson B.R., Chow J.M., Gambetta J.M., Majer J., Frunzio L., Devoret M.H., Girvin S.M., Schoelkopf R.J.: Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502(R) (2008)CrossRefADSGoogle Scholar
  13. 13.
    Houck A.A., Schreier J.A., Johnson B.R., Chow J.M., Koch J., Gambetta J.M., Schuster D.I., Frunzio L., Devoret M.H., Girvin S.M., Schoelkopf R.J.: Controlling the spontaneous emission of a superconducting transmon qubit. Phys. Rev. Lett. 101, 080502 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Fink J.M., Goppl M., Baur M., Bianchetti R., Leek P.J., Blais A., Wallraff A.: Climbing the Jaynes-Cummings ladder and observing its [sqrtn] nonlinearity in a cavity QED system. Nature 454, 315 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Bishop L.S., Chow J.M., Koch J., Houck A.A., Devoret M.H., Thuneberg E., Girvin S.M., Schoelkopf R.J.: Nonlinear response of the vacuum Rabi resonance. Nature Phys. 5, 105 (2009)CrossRefGoogle Scholar
  16. 16.
    Chow, J.M., Gambetta, J.M., Tornberg, L., Koch, J., Bishop, L.S., Houck, A.A., Johnson, B.R., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Randomized benchmarking and process tomography for gate errors in a solid-state qubit. arXiv:0811.4387. Phys. Rev. Lett. (2008, accepted)Google Scholar
  17. 17.
    Schneiderman, J.F., Shaw, M.D., Palmer, B., Delsing, P., Echternach, P.M.: Quasiparticle Poisoning and Quantum Coherence in a Differential Charge Qubit. arXiv:0705.0695 (2007)Google Scholar
  18. 18.
    Ambegaokar V., Baratoff A.: Tunneling between superconductors. Phys. Rev. Lett. 10, 486 (1963)CrossRefADSGoogle Scholar
  19. 19.
    You J.Q., Hu X., Ashab S., Nori F.: Low-decoherence flux qubit. Phys. Rev. B 75, 140515 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Steffen M., Ansmann M., McDermott R., Katz N., Bialczak R.C., Lucero E., Neeley M., Weig E.M., Cleland A.N., Martinis J.M.: State tomography of capacitively shunted phase qubits with high fidelity. Phys. Rev. Lett. 97, 050502 (2006)CrossRefADSGoogle Scholar
  21. 21.
    Vion D., Aassime A., Cottet A., Joyez P., Pothier H., Urbina C., Esteve D., Devoret M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Metcalfe M., Boaknin E., Manucharyan V., Vijay R., Siddiqi I., Rigetti C., Frunzio L., Schoelkopf R.J., Devoret M.H.: Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier. Phys. Rev. B 76, 174516 (2007)CrossRefADSGoogle Scholar
  23. 23.
    Zorin A.B., Ahlers F.-J., Niemeyer J., Weimann T., Wolf H.: Background charge noise in metallic single-electron tunneling devices. Phys. Rev. B 53, 13682 (1996)CrossRefADSGoogle Scholar
  24. 24.
    Duty T., Johannson G., Bladh K., Gunnarsson D., Wilson C., Delsing P.: Observation of quantum capacitance in the Cooper-pair transistor. Phys. Rev. Lett. 95, 206807 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Blais A., Huang R.-S., Wallraff A., Girvin M.S., Schoelkopf J.R.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)CrossRefADSGoogle Scholar
  26. 26.
    Aumentado J., Keller M.W., Martinis J.M., Devoret M.H.: Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. Phys. Rev. Lett. 92, 066802 (2004)CrossRefADSGoogle Scholar
  27. 27.
    Lutchyn R.M., Glazman L.I., Larkin A.I.: Kinetics of the superconducting charge qubit in the presence of a quasiparticle. Phys. Rev. B 74, 064515 (2006)CrossRefADSGoogle Scholar
  28. 28.
    Chow, J.M.: private communication (2008)Google Scholar
  29. 29.
    Purcell E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  30. 30.
    Wellstood F.C., Urbina C., Clarke J.: Low-frequency noise in dc superconducting quantum interference devices below 1 K. Appl. Phys. Lett. 50, 772 (1987)CrossRefADSGoogle Scholar
  31. 31.
    Yoshihara F., Harrabi K., Niskanen A.O., Nakamura Y., Tsai J.S.: Decoherence of flux qubits due to 1/f flux noise. Phys. Rev. Lett. 97, 167001 (2006)CrossRefADSGoogle Scholar
  32. 32.
    Van Harlingen D.J., Robertson T.L., Plourde B.L.T., Reichardt P.A., Crane T.A., Clarke J.: Decoherence in Josephson-junction qubits due to critical-current fluctuations. Phys. Rev. B 70, 064517 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. A. Houck
    • 1
  • Jens Koch
    • 2
    Email author
  • M. H. Devoret
    • 2
  • S. M. Girvin
    • 2
  • R. J. Schoelkopf
    • 2
  1. 1.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Departments of Physics and Applied PhysicsYale UniversityNew HavenUSA

Personalised recommendations