Advertisement

Quantum Information Processing

, Volume 8, Issue 1, pp 13–24 | Cite as

Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families

  • Harumichi Nishimura
  • Masanao OzawaEmail author
Open Access
Article

Abstract

In order to establish the computational equivalence between quantum Turing machines (QTMs) and quantum circuit families (QCFs) using Yao’s quantum circuit simulation of QTMs, we previously introduced the class of uniform QCFs based on an infinite set of elementary gates, which has been shown to be computationally equivalent to the polynomial-time QTMs (with appropriate restriction of amplitudes) up to bounded error simulation. This result implies that the complexity class BQP introduced by Bernstein and Vazirani for QTMs equals its counterpart for uniform QCFs. However, the complexity classes ZQP and EQP for QTMs do not appear to equal their counterparts for uniform QCFs. In this paper, we introduce a subclass of uniform QCFs, the finitely generated uniform QCFs, based on finite number of elementary gates and show that the class of finitely generated uniform QCFs is perfectly equivalent to the class of polynomial-time QTMs; they can exactly simulate each other. This naturally implies that BQP as well as ZQP and EQP equal the corresponding complexity classes of the finitely generated uniform QCFs.

Keywords

Quantum computation Complexity theory Uniform circuit families Turing machines Finitely generated uniform quantum circuit families 

Notes

Acknowledgements

M. Ozawa gratefully acknowledges the financial support of the SCOPE project of the MIC, the Grant-in-Aid for Scientific Research (B) 17340021 of the JSPS, and the CREST project of the JST.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. 1.
    Adleman L.M., DeMarrais J., Huang M.A.: Quantum computability. SIAM J. Comput. 26, 1524–1540 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barenco A., Bennett C.H., Cleve R., DiVicenzo D.P., Margolus N., Shor P., Sleator T., Smolin J., Weinfurter H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)CrossRefADSGoogle Scholar
  3. 3.
    Beame P.W., Cook S.A., Hoover H.J.: Log depth circuits for division and related problems. SIAM J. Comput. 15, 994–1003 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bernstein, E., Vazirani, U.: Quantum complexity theory (preliminary abstract). In: Proceedings of the 25th ACM Symposium on Theory of Computing, pp. 11–20. ACM Press, New York (1993)Google Scholar
  5. 5.
    Bernstein E., Vazirani U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borodin A.: On relating time and space to and size and depth. SIAM J. Comput. 6, 733–743 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Deutsch D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lon. Ser. A 400, 96–117 (1985)ADSGoogle Scholar
  8. 8.
    Deutsch D.: Quantum computational networks. Proc. R. Soc. Lon. Ser. A 425, 73–90 (1989)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Ekert A., Jozsa R.: Shor’s quantum algorithm for factoring numbers. Rev. Modern Phys. 68, 733–753 (1996)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Green F., Homer S., Moore C., Pollett C.: Counting, fanout, and the complexity of quantum ACC. Quantum Inf. Comput. 2, 35–65 (2002)MathSciNetGoogle Scholar
  11. 11.
    Gruska J.: Quantum Computing. McGraw-Hill, Berkshire (1999)Google Scholar
  12. 12.
    Ko K.-I., Friedman H.: Computational complexity of real functions. Theor. Comput. Sci. 20, 323–352 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ko K.-I.: Complexity Theory of Real Functions. Birkhäuser, Basel (1991)zbMATHGoogle Scholar
  14. 14.
    Kitaev, A., Watrous, J.: Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In: Proceedings of the 32nd ACM Symposium on Theory of Computing, pp. 608–617. ACM Press, New York (2000)Google Scholar
  15. 15.
    Mosca M., Zalka C.: Exact quantum Fourier transforms and discrete logarithm algorithms. Int. J. Quantum Inf. 2, 91–100 (2004)zbMATHCrossRefGoogle Scholar
  16. 16.
    Möttönen, M., Vartiainen, J.J.: Decomposition of general quantum gates. Available via http://arxiv.org/quant-ph/0504100
  17. 17.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  18. 18.
    Nishimura H.: Quantum computation with restricted amplitudes. Int. J. Found. Comput. Sci. 14, 853–870 (2003)zbMATHCrossRefGoogle Scholar
  19. 19.
    Nishimura H., Ozawa M.: Computational complexity of uniform quantum circuit families and quantum Turing machines. Theor. Comput. Sci. 276, 147–181 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Nishimura H., Ozawa M.: Uniformity of quantum circuit families for error-free algorithms. Theor. Comput. Sci. 392, 487–496 (2005)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Ozawa M., Nishimura H.: Local transition functions of quantum Turing machines. RAIRO Theor. Inform. Appl. 34, 379–402 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Papadimitriou C.H.: Computational Complexity. Addison-Wesley, Reading, MA (1994)zbMATHGoogle Scholar
  23. 23.
    Ruzzo W.L.: On uniform circuit complexity. J. Comput. Syst. Sci. 21, 365–383 (1981)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput 26, 1484–1509 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Shor, P.W.: Fault-tolerant quantum computation. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, pp. 56–65. IEEE Computer Society Press, Los Alamitos, CA (1996)Google Scholar
  26. 26.
    Yamakami, T.: A foundation of programming a multi-tape quantum Turing machine. In: Proceedings of the 24th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, vol. 1672, pp. 430–441 (1999)Google Scholar
  27. 27.
    Yao, A.C.-C.: Quantum circuit complexity. In: Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pp. 352–361. IEEE Computer Society Press, Los Alamitos, CA (1993)Google Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  1. 1.School of ScienceOsaka Prefecture UniversitySakaiJapan
  2. 2.Graduate School of Information ScienceNagoya UniversityNagoyaJapan

Personalised recommendations