Quantum Information Processing

, Volume 6, Issue 5, pp 323–348 | Cite as

Quantum Algorithms for Learning and Testing Juntas


In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: (1) whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; (2) with no access to any classical or quantum membership (“black-box”) queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; (3) which require only a few quantum examples but possibly many classical random examples (which are considered quite “cheap” relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: (1) We give an algorithm for testing k-juntas to accuracy ε that uses O(k/ϵ) quantum examples. This improves on the number of examples used by the best known classical algorithm. (2) We establish the following lower bound: any FS-based k-junta testing algorithm requires \(\Omega(\sqrt{k})\) queries. (3) We give an algorithm for learning k-juntas to accuracy ϵ that uses O−1 k log k) quantum examples and O(2 k log(1/ϵ)) random examples. We show that this learning algorithm is close to optimal by giving a related lower bound.


Juntas quantum query algorithms quantum property testing computational learning theory quantum computation lower bounds 


03.67.-a 03.67.Lx 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambainis A., Iwama K., Kawachi A., Masuda H., Putra R.H., and Yamashita S., in Proceedings of STACS 2004, pp. 93–104 (2003).Google Scholar
  2. Atıcı A., Servedio R.A. (2005). Quantum Information Process. 4, 355–386Google Scholar
  3. Bshouty N.H., Jackson J.C. (1999). SIAM J. Comp. 28, 1136–1153MATHCrossRefMathSciNetGoogle Scholar
  4. J. Castro, in Proceedings of 17th ALT, pp. 78–92 (2006).Google Scholar
  5. M. Hunziker, Meyer D.A., J. Park, J. Pommersheim, and M. Rothstein, The Geometry of Quantum Learning, arXiv:quant-ph/0309059; Quantum Information Processing (to appear).Google Scholar
  6. K. Iwama, A. Kawachi, R. Raymond, and S. Yamashita, Robust Quantum Algorithms for Oracle Identification, arXiv:quant-ph/0411204 (2005).Google Scholar
  7. Servedio R.A., Gortler S.J. (2004). SIAM J. Comp. 33, 1067–1092MATHCrossRefMathSciNetGoogle Scholar
  8. H. Buhrman, L. Fortnow, I. Newman, and H. Röhrig, in Proceedings of 14th SODA, pp. 480–488 (2003).Google Scholar
  9. K. Friedl, F. Magniez, M. Santha, and P. Sen, in Proceedings of the 28th International Symposium on Mathematical Foundations of Computer Science, pp. 419–428.Google Scholar
  10. F. Magniez and A. Nayak, in Proceedings of the 32nd International Colloquium on Automata, Languages and Programming, pp. 1312–1324 (2005).Google Scholar
  11. Jackson J.C. (1997). J. Comput. Syst. Sci. 55, 414–440MATHCrossRefGoogle Scholar
  12. Valiant L.G. (1984). Commun. Assoc. Comp. Machinery 27, 1134–1142MATHGoogle Scholar
  13. J. Arpe and R. Reischuk, in Proceedings of the 14th International Conference on Algorithmic Learning Theory, pp. 99–113 (2003).Google Scholar
  14. J. Arpe and R. Reischuk, in Proceedings of the 3rd International Conference on Theory and Applications of Models of Computation, pp. 387–398 (2006).Google Scholar
  15. A. Blum, in Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop, pp. 731–733 (2003).Google Scholar
  16. Chockler H., Gutfreund D. (2004). Information Process. Lett. 90, 301–305CrossRefMathSciNetGoogle Scholar
  17. E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky, in Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, pp. 103–112 (2002).Google Scholar
  18. R. Lipton, E. Markakis, A. Mehta, and N. Vishnoi, in Proceedings of the 20th Annual IEEE Conference on Computational Complexity, pp. 112–119 (2005).Google Scholar
  19. Mossel E., O’Donnell R., Servedio R.A. (2004). J. Compu. Syst. Sci. 69, 421–434MATHCrossRefMathSciNetGoogle Scholar
  20. J. Köbler and W. Lindner, Bull. EATCS 89 (2006).Google Scholar
  21. Y. Mansour, Learning Boolean functions via the Fourier transform, in Theoretical Advances in Neural Computation and Learning (Kluwer Academic Publishers, 1994, pp. 391–424).Google Scholar
  22. Kushilevitz E., Mansour Y. (1993). SIAM J. Comput. 22, 1331–1348MATHCrossRefMathSciNetGoogle Scholar
  23. Goldreich O., Goldwasser S., Ron D. (1998). J. ACM 45, 653–750MATHCrossRefMathSciNetGoogle Scholar
  24. Rubinfeld R., Sudan M. (1996). SIAM J. Comp. 25, 252–271MATHCrossRefMathSciNetGoogle Scholar
  25. Kahn J., Kalai G., and Linial N., in Proceedings of the 29th IEEE Symposium on Foundations of Computer Science, pp. 68–80 (1988).Google Scholar
  26. Bernstein E., Vazirani U. (1997). SIAM J. Comp 26, 1411–1473MATHCrossRefMathSciNetGoogle Scholar
  27. R. O’Donnell and R. A. Servedio, J. Comp System Sci, to appear. Available at Preliminary version appeared in Eighteenth Annual IEEE Conference on Computational Complexity, pp. 3–12 (2003).
  28. Bshouty N., Cleve R., Gavaldà R., Kannan S., and Tamon C. (1996). J. Comp. Syst. Sci. 52, 421–433MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Citadel Investment GroupChicagoUSA
  2. 2.Department of Computer ScienceColumbia UniversityNew YorkUSA

Personalised recommendations