Quantum Information Processing

, Volume 6, Issue 3, pp 179–186 | Cite as

Simplification of Additivity Conjecture in Quantum Information Theory

Article

We simplify some conjectures in quantum information theory; the additivity of minimal output entropy, the multiplicativity of maximal output p-norm and the superadditivity of convex closure of output entropy. In this paper, by using some unital extension of quantum channels, we show that proving one of these conjectures for all unital quantum channels would imply that it is also true for all quantum channels.

Keywords

quantum channel unital quantum channel additivity multiplicativity 

PACS Numbers

03.67.-a 03.67.Hk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Alicki and M. Fannes, “Note on multiple additivity of minimal Renyi entropy output of the Werner-Holevo channels”, quant-ph/0407033.Google Scholar
  2. 2.
    G. G. Amosov, Remark on the additivity conjecture for the quantum depolarizing channel, quant-ph/0408004.Google Scholar
  3. 3.
    K. M. R. Audenaert and S. L. Braunstein, Comm. Math. Phys. 246 443 (2004), quant-ph/0303045.Google Scholar
  4. 4.
    N. Datta, A. S. Holevo, and Y. Suhov, A quantum channel with additive minimum output entropy, quant-ph/0403072.Google Scholar
  5. 5.
    N. Datta, A. S. Holevo, and Y. Suhov, Additivity for transpose depolarizing channels, quant-ph/0412034.Google Scholar
  6. 6.
    N. Datta and M. B. Ruskai, J. Phys. A, 38 9785, (2005), quant-ph/0505048.Google Scholar
  7. 7.
    M. Fannes, B. Haegeman, M. Mosonyi, and D. Vanpeteghem, Additivity of minimal entropy output for a class of covariant channels, quant-ph/0410195.Google Scholar
  8. 8.
    A. Fujiwara and T. Hashizumé, Phys. lett. A, 299 469 (2002).Google Scholar
  9. 9.
    M. Fukuda, J. Phys. A, 38 L753 (2005), quant-ph/0505022.Google Scholar
  10. 10.
    A. S. Holevo, Remarks on the classical capacity of quantum channel, quant-ph/0212025.Google Scholar
  11. 11.
    King C. (2002) J. Math. Phys. 43: 4641MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    C. King, Maximal p-norms of entanglement breaking channels, quant-ph/0212057.Google Scholar
  13. 13.
    King C. (2003) IEEE Trans. Inform. Theory 49: 221MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    C. King, An application of a matrix inequality in quantum information theory, quant-ph/0412046.Google Scholar
  15. 15.
    C. King and M. B. Ruskai, IEEE Trans. Info. Theory, 47 192 (2001), quant-ph/9911079.Google Scholar
  16. 16.
    Matsumoto K, Shimono T., Winter A. (2004) Comm. Math. Phys. 246(3): 427MATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Matsumoto K., Yura F. (2004) J. Phys. A, 37: L167MATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    A. A. Pomeransky, Phys. Rev. A, 68 032317 (2003), quant-ph/0305056.Google Scholar
  19. 19.
    Shor P.W. (2002) J. Math. Phys. 43: 4334MATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    P. W. Shor, Comm. Math. Phys. 246(3) 453 (2004), quant-ph/0305035.Google Scholar
  21. 21.
    R. F. Werner and A. S. Holevo, J. Math. Phys. 43 4353 (2002), quant-ph/0203003.Google Scholar
  22. 22.
    Wolf M.M., Eisert J. (2005) New J. Phys. 7: 93CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Statistical Laboratory, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations