Quantum Information Processing

, Volume 5, Issue 2, pp 131–138 | Cite as

The Physics of No-Bit-Commitment: Generalized Quantum Non-Locality Versus Oblivious Transfer

  • Anthony J. Short
  • Nicolas Gisin
  • Sandu Popescu

We show here that the recent work of Wolf and Wullschleger (quant-ph/0502030) on oblivious transfer apparently opens the possibility that non-local correlations which are stronger than those in quantum mechanics could be used for bit-commitment. This is surprising, because it is the very existence of non-local correlations which in quantum mechanics prevents bit-commitment. We resolve this apparent paradox by stressing the difference between non-local correlations and oblivious transfer, based on the time-ordering of their inputs and outputs, which prevents bit-commitment.


Quantum non-locality bit-commitment oblivious transfer PR-box 


03.65.Ud 03.67.Dd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Bennett and G. Brassard, Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, 175 (1984).Google Scholar
  2. 2.
    Mayers D. (1997). Phys. Rev. Lett. 78: 3414CrossRefADSGoogle Scholar
  3. 3.
    Lo H.-K., Chau H.F. (1997). Phys. Rev. Lett. 78: 3410CrossRefADSGoogle Scholar
  4. 4.
    Bell J.S. (1964). Physics 1: 195Google Scholar
  5. 5.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).Google Scholar
  6. 6.
    Popescu S., Rohrlich D. (1994). Found. Phys. 24, 379CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, quant-ph/0404097 (2004).Google Scholar
  8. 8.
    N. J. Cerf, N. Gisin, S. Massar, and S. Popescu, quant-ph/0410027 (2004).Google Scholar
  9. 9.
    S. Wolf and J. Wullschleger, Oblivious Transfer and Quantum Nonlocality, quant-ph/ 0502030 (2005).Google Scholar
  10. 10.
    Wiesner S. (1983). SIGACT News 15, 78CrossRefGoogle Scholar
  11. 11.
    Even S., Goldreich O., Lempel A. (1985). Communi. ACM 28, 637CrossRefMathSciNetGoogle Scholar
  12. 12.
    C. Crépeau, Advances in Cryptology: Proceedings of Crypto ’87, Springer-Verlag Lecture Notes in Computer Science 293, 350 (1988).Google Scholar
  13. 13.
    J. Kilian, Proc. of the 20th Annual ACM Symposium on Theory of Computing, 20 (1988).Google Scholar
  14. 14.
    Furthermore, in the case of the PR-box, Alice has an output which is correlated with Bob’s input and output, which she can use to help her cheat.Google Scholar
  15. 15.
    A. J. Short, N. Gisin, and S. Popescu, in preparation.Google Scholar
  16. 16.
    H. Buhrman, M. Christandl, F. Unger, S. Wehner, and A. Winter, Implications of Superstrong Nonlocality for Cryptography. quant-ph/0504133 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Anthony J. Short
    • 1
  • Nicolas Gisin
    • 2
  • Sandu Popescu
    • 1
    • 3
  1. 1.HH Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.Group of Applied PhysicsUniversity of GenevaGeneva 4Switzerland
  3. 3.Hewlett-Packard LaboratoriesStoke GiffordBristolUK

Personalised recommendations