Quantum Information Processing

, Volume 4, Issue 3, pp 219–239 | Cite as

Further Results on the Cross Norm Criterion for Separability

  • Oliver RudolphEmail author


In the present paper we develop and investigate a novel approach that aims to characterize quantum entanglement by using cross norms. In the first part of the paper we further develop the mathematical theory by determining the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that our techniques induce a novel powerful analytical and computable separability criterion for bipartite systems. This new criterion complements the well-known Peres positive partial transpose criterion in several aspects. It is a necessary but in general not a sufficient criterion for separability. We demonstrate the power of the new criterion by evaluating the criterion for a number of important examples. We also demonstrate that the new criterion is able to detect bound entangled states.


Quantum entanglement separability criteria tensor norm bound entangled states greatest cross norm 


03.67.Mn 03.67.a 02.30.Tb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D., Bruß 2002Characterizing entanglementJ. Math. Phys.4342374251CrossRefGoogle Scholar
  2. 2.
    Donald, M. J., Horodecki, M., Rudolph, O. 2002The uniqueness theorem for entanglement measuresJ. Math. Phys.4342524272CrossRefGoogle Scholar
  3. 3.
    Rudolph, O. 2000A separability criterion for density operatorsJ. Phys. A Math. Gen.3339513955CrossRefGoogle Scholar
  4. 4.
    Rudolph, O. 2001A new class of entanglement measuresJ. Math. Phys.4253065314CrossRefGoogle Scholar
  5. 5.
    Terhal, B.M., Vollbrecht, K. G. H. 2000The Entanglement of Formation for Isotropic StatesPhys. Rev. Lett.8526252628CrossRefPubMedGoogle Scholar
  6. 6.
    Peres, A. 1996Separability criterion for density matricesPhys. Rev. Lett.7714131415CrossRefPubMedGoogle Scholar
  7. 7.
    Horodecki, M., Horodecki, P., Horodecki, R. 1996Separability of mixed states: necessary and sufficient conditionsPhys. Lett. A7818CrossRefGoogle Scholar
  8. 8.
    Horodecki, M., Horodecki, P. 1999Reduction criterion of separability and limits for a class of protocols of entanglement distillationPhys. Rev. A5942064216CrossRefGoogle Scholar
  9. 9.
    Nielsen, M. A., Kempe, J. 2001Separable states are more disordered globally than locallyPhys. Rev. Lett.8651845187CrossRefPubMedGoogle Scholar
  10. 10.
    Vollbrecht, K. G. H., Wolf, M. M. 2002Conditional entropies and their relation to entanglement criteriaJ. Math. Phys.4342994306CrossRefGoogle Scholar
  11. 11.
    A pure bipartite wavefunction \(\vert \psi \rangle\) in \({\mathbb{C}}^d \otimes {\mathbb{C}}^d\) with Schmidt decomposition \(\vert \psi \rangle = \sum_{k} \sqrt{p_{k}} \vert \chi_{k} \otimes \eta_{k} \rangle\) is called maximally entangled if \(p_{k} = \frac{1}{{d}}\) for all k. Loosely speaking a bound entangled state is an entangled state that cannot be transformed to maximally entangled pure form by local operations assisted by classical communication (LOCC operations). It is known that any entangled state that satisfies the PPT criterion is bound entangled. Entangled states that are not bound entangled are also called distillable or free entangled.Google Scholar
  12. 12.
    Vidal, G., Tarrach, R. 1999Robustness of entanglementPhys. Rev. A59141155CrossRefGoogle Scholar
  13. 13.
    Schmidt, E. 1907Zur Theorie der linearen und nichtlinearen Integralgleichungen. I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebenerMath. Ann.63433476CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ekert, A., Knight, P. L. 1995Entangled quantum systems and the Schmidt decompositionAm. J. Phys.63415423CrossRefGoogle Scholar
  15. 15.
    Schatten, R. 1970Norm Ideals of Completely Continuous OperatorsSpringerBerlinGoogle Scholar
  16. 16.
    Wegge-Olsen, N.E. 1993K-Theory and C*-AlgebrasOxford University PressOxfordGoogle Scholar
  17. 17.
    R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras I & II, (Academic Press, Orlando, 1983 & 1986).Google Scholar
  18. 18.
    Pérez-García, D. 2004Deciding separability with a fixed errorPhys. Lett. A330149154CrossRefGoogle Scholar
  19. 19.
    Gurvits, L. 2004Classical complexity and quantum entanglementJ. Comput. Sys. Sci.69448484CrossRefGoogle Scholar
  20. 20.
    O. Rudolph, Further results on the cross norm criterion for separability, quant-ph/0202121 v1.Google Scholar
  21. 21.
    Horodecki, R., Horodecki, M. 1996Information-theoretic aspects of inseparability of mixed statesPhys. Rev. A5418381843CrossRefPubMedGoogle Scholar
  22. 22.
    Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., Wootters, W. K. 1996Mixed state entanglement and quantum error correctionPhys. Rev. A5438243851CrossRefPubMedGoogle Scholar
  23. 23.
    Horodecki, P., Horodecki, M., Horodecki, R. 1999Bound entanglement can be activatedPhys. Rev. Lett.8210561059CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Dipartimento di Fisica “A. Volta”Universitàa degli Studi di PaviaPaviaItaly

Personalised recommendations