Quantum Information Processing

, Volume 3, Issue 1–5, pp 91–103 | Cite as

Quantum Information Processing with Trapped Neutral Atoms

  • P. S. Jessen
  • I. H. deutsch
  • R. Stock

Abstract

Quantum information can be processed using large ensembles of ultracold and trapped neutral atoms, building naturally on the techniques developed for high-precision spectroscopy and metrology. This article reviews some of the most important protocols for universal quantum logic with trapped neutrals, as well as the history and state-of-the-art of experimental work to implement these in the laboratory. Some general observations are made concerning the different strategies for qubit encoding, transport and interaction, including trade-offs between decoherence rates and the likelihood of two-qubit gate errors. These trade-offs must be addressed through further refinements of logic protocols and trapping technologies before one can undertake the design of a general-purpose neutral-atom quantum processor.

PACS: 03.67.Lx, 32.80.Pj, 34.50.-s

Quantum information processing neutrals atoms controlled collisions optical lattice. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).Google Scholar
  2. 2.
    E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).Google Scholar
  3. 3.
    M. A. Nielsen, Phys. Lett. A 308, 96 (2003).Google Scholar
  4. 4.
    R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).Google Scholar
  5. 5.
    R. Blume-Kohout, C. M. Caves, and I. H. Deutsch, Found. Phys. 32, 1641 (2002).Google Scholar
  6. 6.
    Q. A. Turchette et al., Phys. Rev. Lett. 81, 3631 (1998).Google Scholar
  7. 7.
    D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).Google Scholar
  8. 8.
    Q. A. Turchette et al., Phys. Rev. A 61, 063418 (2000).Google Scholar
  9. 9.
    G. K. Brennen et al., Phys. Rev. Lett. 82, 1060 (1999); G. K. Brennen, I. H. Deutsch, and C. J. Williams, Phys. Rev. A 65, 022313 (2002).Google Scholar
  10. 10.
    D. Jaksch et al., Phys. Rev. Lett. 82, 1975 (1999).Google Scholar
  11. 11.
    P. S. Jessen and I. H. Deutsch, Adv. At. Mol. Opt. Phys. 37, 95 (1996).Google Scholar
  12. 12.
    D. Jaksch et al., Phys. Rev. Lett. 85, 2208 (2000)Google Scholar
  13. 13.
    L. You and M. S. Chapman, Phys. Rev. A 62, 052302 (2000)Google Scholar
  14. 14.
    S. E. Hamann et al., Phys. Rev. Lett. 80, 4149 (1998).Google Scholar
  15. 15.
    M. Morinaga et al., Phys. Rev. Lett. 83, 4037 (1999); M. BenDahan et al., Phys. Rev. Lett. 76, 4508 (1996).Google Scholar
  16. 16.
    G. Klose, G. Smith, and P. S. Jessen, Phys. Rev. Lett. 86, 4721 (2001).Google Scholar
  17. 17.
    S. H. Myrskog, e-print quant-ph/0312210.Google Scholar
  18. 18.
    D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (2000).Google Scholar
  19. 19.
    M. Greiner et al., Nature (Lond.) 415, 39 (2002).Google Scholar
  20. 20.
    O. Mandel et al., Phys. Rev. Lett. 91, 010407 (2003).Google Scholar
  21. 21.
    O. Mandel et al., Nature (Lond.) 425, 937 (2003).Google Scholar
  22. 22.
    S. Peil et al., Phys. Rev. A 67, 051603 (2003).Google Scholar
  23. 23.
    R. Scheunemann et al., Phys. Rev. A 62, 051801 (2000).Google Scholar
  24. 24.
    R. Folman et al., Adv. At. Mol. Opt. Phys. 48, 263 (2002).Google Scholar
  25. 25.
    N. Schlosser et al., Nature (Lond.) 411, 1024 (2001).Google Scholar
  26. 26.
    R. Dumke et al., Phys. Rev. Lett. 89, 097903 (2002).Google Scholar
  27. 27.
    I. H. Deutsch, and P. S. Jessen, Phys. Rev. A 57, 1972 (1998).Google Scholar
  28. 28.
    E. Charron et al., Phys. Rev. Lett. 88, 077901 (2002).Google Scholar
  29. 29.
    K. Eckert et al., Phys. Rev. A 66, 042317 (2002).Google Scholar
  30. 30.
    M. T. Depue et al., Phys. Rev. Lett. 82, 2262 (1999); A. J. Kerman et al., Phys. Rev. Lett. 84, 439 (2000).Google Scholar
  31. 31.
    I. H. Deutsch, G. K. Brennen, and P. S. Jessen, Fortschr. Phys. 48, 925 (2000).Google Scholar
  32. 32.
    R. Stock, E. L. Bolda, and I. H. Deutsch, Phys. Rev. Lett. 91, 183201 (2003).Google Scholar
  33. 33.
    S. Inouye et al., Nature (Lond.) 392, 151 (1998); T. Weber et al., Science 299, 232 (2003); A. Widera et al., e-print cond-mat/0310719.Google Scholar
  34. 34.
    P. Treutlein et al., quant-ph/0311197.Google Scholar
  35. 35.
    E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Mat. Phys. 43, 4452 (2002).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  • P. S. Jessen
    • 1
  • I. H. deutsch
    • 2
  • R. Stock
    • 2
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  2. 2.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations