Advertisement

Public Choice

, Volume 179, Issue 1–2, pp 41–49 | Cite as

Social welfare with net utilities

  • Jon X. EguiaEmail author
  • Dimitrios Xefteris
Article

Abstract

We consider a society facing a binary choice, in an environment in which differences in utility are comparable across individuals. In such an environment, net utility is the difference between the utility that an individual attains from one alternative, and the utility she attains from the other alternative. A social welfare ordering is a preference relation over net utility profiles. We show that a social welfare ordering satisfies a collection of standard normative axioms if and only if it is representable by a collective utility function defined by the sums of a given power of net individual utilities.

Keywords

Cardinal utility Social welfare Collective utility function 

JEL Classification

D72 

References

  1. Arrow, K. J. ([1951] 1963). Social choice and individual values, 2nd ed. Cowles Foundation No. 12. New Haven: Yale University Press.Google Scholar
  2. Arrow, K. J. (1965). Aspects of the theory of risk-bearing. Helsinki: Yrjö Jahnssonin Säätiö.Google Scholar
  3. Blackorby, C., Primont, D., & Russell, R. (1998). Separability: A survey. In S. Barberà, P. Hammond, & Seidl, C. (Eds.), Handbook of utility theory I (pp. 49–92). Springer.Google Scholar
  4. Burk, A. (1936). Real income, expenditure proportionality, and Frisch’s ‘New Methods of Measuring Marginal Utility’. Review of Economic Studies, 4(1), 33–52.CrossRefGoogle Scholar
  5. d’Aspremont, C., & Gevers, L. (1977). Equity and the informational basis of collective choice. Review of Economic Studies, 44(2), 199–209.CrossRefGoogle Scholar
  6. Debreu, G. (1954). Representation of a preference ordering by a numerical function. In R. Thrall, C. Coombs, & R. Davis (Eds.), Decision processes. New York: Wiley.Google Scholar
  7. Debreu, G. (1960). Topological methods in cardinal utility theory. In K. Arrow, S. Karlin, & P. Suppes (Eds.), Mathematical methods in the social sciences (pp. 16–26). Redwood: Stanford University Press.Google Scholar
  8. Gorman, W. M. (1968). The structure of utility functions. Review of Economic Studies, 35(4), 367–390.CrossRefGoogle Scholar
  9. Hicks, J. R. (1965). Capital and growth. Oxford: Oxford University Press.Google Scholar
  10. Katzner, D. W. (1970). Static demand theory. New York: Macmillan.Google Scholar
  11. Maskin, E. (1978). A theorem on utilitarianism. Review of Economic Studies, 45(1), 93–96.CrossRefGoogle Scholar
  12. May, K. O. (1952). A set of independent necessary and sufficient conditions for simple majority decision. Econometrica, 20(4), 680–684.CrossRefGoogle Scholar
  13. Moulin, H. (1988). Axioms of cooperative decision making. Cambridge: Cambridge University of Press.CrossRefGoogle Scholar
  14. Roberts, K. W. (1980). Interpersonal comparability and social choice theory. Review of Economic Studies, 47(2), 421–439.CrossRefGoogle Scholar
  15. Sen, A. K. (1966). A possibility theorem on majority decisions. Econometrica, 34(2), 491–499.CrossRefGoogle Scholar
  16. Sen, A. K. (1970). Interpersonal aggregation and partial comparability. Econometrica, 38, 393–409.CrossRefGoogle Scholar
  17. Sen, A. K. (1977). On weights and measures: Informational constraints in social welfare analysis. Econometrica, 45(7), 1539–1572.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA
  2. 2.University of CyprusNicosiaCyprus

Personalised recommendations