Advertisement

Public Choice

, Volume 146, Issue 1–2, pp 1–8 | Cite as

In memoriam: Melvin J. Hinich, 1939–2010

  • Peter Ordeshook
  • Michael MungerEmail author
  • Tse-min Lin
  • Bryan Jones
Obituary
  • 285 Downloads

References

  1. Black, D. (1958). The theory of committees and elections. New York: Cambridge University Press. Google Scholar
  2. Davis, O., & Hinich, M. (1966). A mathematical model of policy formation in a democratic society. In J. Bernd (Ed.), Mathematical applications in political science II. Monograph, Arnold Foundation Monographs (pp. 175–208). Dallas: Southern Methodist University Press. Google Scholar
  3. Davis, O., & Hinich, M. (1967). Some results related to a mathematical model of policy formation in a democratic society. In J. Bernd (Ed.), Mathematical applications in political science III (pp. 14–38). Charlottesville: University Press of Virginia. Google Scholar
  4. Davis, O., & Hinich, M. (1968). On the power and importance of the mean preference in a mathematical model of democratic choice. Public Choice, 5, 59–72. CrossRefGoogle Scholar
  5. Davis, O., & Hinich, M. (1971). Some extensions to a mathematical model of democratic choice. In B. Lieberman (Ed.), Social choice (pp. 323–347). New York: Gordon and Breach. Google Scholar
  6. Davis, O., Hinich, M., & Ordeshook, P. (1970). An expository development of a mathematical model of the electoral process. American Political Science Review, 64(2), 426–448. CrossRefGoogle Scholar
  7. Downs, A. (1957). An economic theory of democracy. Chicago: Addison-Wesley. Google Scholar
  8. Enelow, J., & Hinich, M. (1984). The spatial theory of voting: an introduction. Cambridge: Cambridge University Press. Google Scholar
  9. Enelow, J., & Hinich, M. (Eds.) (1990). Advances in the spatial theory of voting. Cambridge: Cambridge University Press. Google Scholar
  10. Grofman, B., & Matsuoka, N. (2007). The political science 400. PS: Political Science and Politics, 40, 133–145. Google Scholar
  11. Hinich, M. J. (1982). Testing for Gaussianity and linearity of a stationary time series. Journal of Time Series Analysis, 3, 169–176. CrossRefGoogle Scholar
  12. Hinich, M., & Munger, M. (1994). Ideology and the theory of political choice. Ann Arbor: University of Michigan Press. Google Scholar
  13. Hinich, M., & Munger, M. (1997). Analytical politics. Cambridge: Cambridge University Press. Google Scholar
  14. Hinich, M., & Ordeshook, P. (1969). Abstentions and equilibrium in the electoral process. Public Choice, 7, 81–106. CrossRefGoogle Scholar
  15. Hinich, M., & Ordeshook, P. (1970). Plurality maximization: a spatial analysis with variable participation. American Political Science Review, 64(3), 772–791. CrossRefGoogle Scholar
  16. Hinich, M., & Ordeshook, P. (1971). Social welfare and electoral competition in democratic societies. Public Choice, 11, 73–83. CrossRefGoogle Scholar
  17. Jones, B. D. (1995). Reconceiving decision-making in democratic politics: attention, choice, and public policy. Chicago: University of Chicago Press. Google Scholar
  18. Ordeshook, P. C. (1976). The spatial theory of elections: a review and a critique. In I. Budge, I. Crewe, & D. Farlie (Eds.) Party identification and beyond. New York: Wiley. Google Scholar
  19. Poole, K. T. (2008). Nominate: A short intellectual history. Available at SSRN: http://ssrn.com/abstract=1154153.
  20. Poole, K., & Rosenthal, H. (1997). Congress: a political-economic history of roll call voting. New York: Oxford University Press. Google Scholar
  21. Riker, W. (1986). The art of political manipulation. New Haven: Yale University Press. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Peter Ordeshook
    • 1
  • Michael Munger
    • 2
    Email author
  • Tse-min Lin
    • 3
  • Bryan Jones
    • 3
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Duke UniversityDurhamUSA
  3. 3.University of Texas AustinAustinUSA

Personalised recommendations