Advertisement

Psychiatric Quarterly

, Volume 89, Issue 3, pp 605–619 | Cite as

Neuroticism Magnifies the Detrimental Association between Social Media Addiction Symptoms and Wellbeing in Women, but Not in Men: a three-Way Moderation Model

  • Ofir TurelEmail author
  • Natalie “Tasha” Poppa
  • Oren Gil-Or
Original Paper

Abstract

Addiction symptoms in relation to the use of social networking sites (SNS) can be associated with reduced wellbeing. However, the mechanisms that can control this association have not been fully characterized, despite their relevance to effective treatment of individuals presenting SNS addiction symptoms. In this study we hypothesize that sex and neuroticism, which are important determinants of how people evaluate and respond to addiction symptoms, moderate this association. To examine these assertions, we employed hierarchical linear and logistic regression techniques to analyze data collected with a cross-sectional survey of 215 Israeli college students who use SNS. Results lend support to the hypothesized negative association between SNS addiction symptoms and wellbeing (as well as potentially being at-risk for low mood/ mild depression), and the ideas that (1) this association is augmented by neuroticism, and (2) that the augmentation is stronger for women than for men. They demonstrated that the sexes may differ in their SNS addiction-wellbeing associations: while men had similar addiction symptoms -wellbeing associations across neuroticism levels, women with high levels of neuroticism presented much steeper associations compared to women with low neuroticism. This provides an interesting account of possible “telescoping effect”, the idea that addicted women present a more severe clinical profile compared to men, in the case of technology-“addictions”.

Keywords

Social media addiction Internet addiction Telescoping effect Sex differences Wellbeing Mild depression Neuroticism 

Notes

Funding

The authors report no extramural funding for this project.

Compliance with Ethical Standards

Conflict of Interest

The authors have no potential conflict of interest pertaining to this Psychiatric Quarterly submission.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Turel O, Brevers D, Bechara A. Time distortion when users at-risk for social media addiction engage in non-social media tasks. J Psychiatr Res. 2018;97:84–8.  https://doi.org/10.1016/j.jpsychires.2017.11.014.CrossRefPubMedGoogle Scholar
  2. 2.
    Turel O, Serenko A. The benefits and dangers of enjoyment with social networking websites. Eur J Inf Syst. 2012;21(5):512–28.  https://doi.org/10.1057/ejis.2012.1.CrossRefGoogle Scholar
  3. 3.
    He Q, Turel O, Bechara A. Brain anatomy alterations associated with Social Networking Site (SNS) addiction. Sci Rep. 2017;7:1–8.  https://doi.org/10.1038/srep45064.CrossRefGoogle Scholar
  4. 4.
    He Q, Turel O, Brevers D, Bechara A. Excess social media use in normal populations is associated with amygdala-striatal but not with prefrontal morphology. Psychiatry Res Neuroimaging. 2017;269(1):31–5.  https://doi.org/10.1016/j.pscychresns.2017.09.003.CrossRefPubMedGoogle Scholar
  5. 5.
    Turel O, Qahri-Saremi H. Problematic use of social networking sites: antecedents and consequence from a dual-system theory perspective. J Manage Inform Syst. 2016;33(4):1087–116.CrossRefGoogle Scholar
  6. 6.
    Turel O. Untangling the complex role of guilt in rational decisions to discontinue the use of a hedonic Information System. Eur J Inf Syst. 2016;25(5):432–47.  https://doi.org/10.1057/s41303-016-0002-5.CrossRefGoogle Scholar
  7. 7.
    Turel O, Serenko A, Integrating GP. Technology addiction and use: an empirical investigation of online auction sites. MIS Q. 2011;35(4):1043–61.CrossRefGoogle Scholar
  8. 8.
    Banyai F, Zsila A, Kiraly O, Maraz A, Elekes Z, Griffiths MD, et al. Problematic social media use: results from a large-scale nationally representative adolescent sample. PLoS One. 2017;12(1):e0169839.  https://doi.org/10.1371/journal.pone.0169839.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Turel O, He Q, Xue G, Xiao L, Bechara A. Examination of neural systems sub-serving Facebook "addiction". Psychol Rep. 2014;115(3):675–95.  https://doi.org/10.2466/18.PR0.115c31z8.CrossRefPubMedGoogle Scholar
  10. 10.
    Andreassen CS, Torsheim T, Brunborg GS, Pallesen S. Development of a Facebook addiction scale. Psychol Rep. 2012;110(2):501–17.  https://doi.org/10.2466/02.09.18.PR0.110.2.501-517.CrossRefPubMedGoogle Scholar
  11. 11.
    Turel O. An empirical examination of the “vicious cycle” of Facebook addiction. J Comput Inform Syst. 2015;55(3):83–91.  https://doi.org/10.1080/08874417.2015.11645775.CrossRefGoogle Scholar
  12. 12.
    Wu AMS, Li JB, Lau JTF, Mo PKH, Lau MMC. Potential impact of internet addiction and protective psychosocial factors onto depression among Hong Kong Chinese adolescents - direct, mediation and moderation effects. Compr Psychiatry. 2016;70:41–52.  https://doi.org/10.1016/j.comppsych.2016.06.011.CrossRefPubMedGoogle Scholar
  13. 13.
    Fattore L, Melis M, Fadda P, Fratta W. Sex differences in addictive disorders. Front Neuroendocrinol. 2014;35(3):272–84.  https://doi.org/10.1016/j.yfrne.2014.04.003.CrossRefPubMedGoogle Scholar
  14. 14.
    Kayis AR, Satici SA, Yilmaz MF, Simsek D, Ceyhan E, Bakioglu F. Big five-personality trait and internet addiction: a meta-analytic review. Comput Hum Behav. 2016;63:35–40.  https://doi.org/10.1016/j.chb.2016.05.012.CrossRefGoogle Scholar
  15. 15.
    Malouff JM, Thorsteinsson EB, Schutte NS. The relationship between the five-factor model of personality and symptoms of clinical disorders: a meta-analysis. J Psychopathol Behav Assess. 2005;27(2):101–14.  https://doi.org/10.1007/s10862-005-5384-y.CrossRefGoogle Scholar
  16. 16.
    Malouff JM, Thorsteinsson EB, Rooke SE, Schutte NS. Alcohol involvement and the five-factor model of personality: a meta-analysis. J Drug Educ. 2007;37(3):277–94.  https://doi.org/10.2190/DE.37.3.d.CrossRefPubMedGoogle Scholar
  17. 17.
    Costa PT, Terracciano A, McCrae RR. Gender differences in personality traits across cultures: robust and surprising findings. J Pers Soc Psychol. 2001;81(2):322–31.  https://doi.org/10.1037//0022-3514.81.2.322.CrossRefPubMedGoogle Scholar
  18. 18.
    Diener E, Suh EM, Lucas RE, Smith HL. Subjective well-being: three decades of progress. Psychol Bull. 1999;125(2):276–302.  https://doi.org/10.1037//0033-2909.125.2.276.CrossRefGoogle Scholar
  19. 19.
    Turel O. Quitting the use of a habituated hedonic information system: a theoretical model and empirical examination of Facebook users. Eur J Inf Syst. 2015;24(4):431–46.  https://doi.org/10.1057/ejis.2014.19.CrossRefGoogle Scholar
  20. 20.
    Caplan S. Problematic internet use and psychosocial well-being: development of a theory-based cognitive-behavioral measurement instrument. Comput Hum Behav. 2002;18(5):553–75.CrossRefGoogle Scholar
  21. 21.
    Caplan S, Williams D, Yee N. Problematic internet use and psychosocial well-being among MMO players. Comput Hum Behav. 2009;25(6):1312–9.  https://doi.org/10.1016/j.chb.2009.06.006.CrossRefGoogle Scholar
  22. 22.
    Muusses LD, Finkenauer C, Kerkhof P, Billedo CJ. A longitudinal study of the association between compulsive internet use and wellbeing. Comput Hum Behav. 2014;36:21–8.  https://doi.org/10.1016/j.chb.2014.03.035.CrossRefGoogle Scholar
  23. 23.
    Kross E, Verduyn P, Demiralp E, Park J, Lee DS, Lin N, et al. Facebook use predicts declines in subjective well-being in young adults. PLoS One. 2013;8(8):e69841.  https://doi.org/10.1371/journal.pone.0069841.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Coen SJ, Kano M, Farmer AD, Kumari V, Giampietro V, Brammer M et al. neuroticism influences brain activity during the experience of visceral pain. Gastroenterology 2011;141(3):909-U639. doi: https://doi.org/10.1053/j.gastro.2011.06.008.
  25. 25.
    Gunthert KC, Cohen LH, Armeli S. The role of neuroticism in daily stress and coping. J Pers Soc Psychol. 1999;77(5):1087–100.  https://doi.org/10.1037/0022-3514.77.5.1087.CrossRefPubMedGoogle Scholar
  26. 26.
    Robinson MD, Ode S, Moeller SK, Goetz PW. Neuroticism and affective priming: evidence for a neuroticism-linked negative schema. Personal Individ Differ. 2007;42(7):1221–31.  https://doi.org/10.1016/j.paid.2006.09.027.CrossRefGoogle Scholar
  27. 27.
    Lahey BB. Public health significance of neuroticism. Am Psychol. 2009;64(4):241–56.  https://doi.org/10.1037/a0015309.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Puig-Perez S, Villada C, Pulopulos MM, Hidalgo V, Salvador A. How are neuroticism and depression related to the psychophysiological stress response to acute stress in healthy older people? Physiol Behav. 2016;156:128–36.  https://doi.org/10.1016/j.physbeh.2016.01.015.CrossRefPubMedGoogle Scholar
  29. 29.
    Lighthall NR, Mather M, Gorlick MA. Acute stress increases sex differences in risk seeking in the balloon analogue risk task. PLoS One. 2009;4(7):e6002.  https://doi.org/10.1371/journal.pone.0006002.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kirschbaum C, Wust S, Hellhammer D. Consistent sex-differences in cortisol responses to psychological stress. Psychosom Med. 1992;54(6):648–57.CrossRefPubMedGoogle Scholar
  31. 31.
    Tamres LK, Janicki D, Helgeson VS. Sex differences in coping behavior: a meta-analytic review and an examination of relative coping. Personal Soc Psychol Rev. 2002;6(1):2–30.  https://doi.org/10.1207/s15327957pspr0601_1.CrossRefGoogle Scholar
  32. 32.
    Lighthall NR, Sakaki M, Vasunilashorn S, Nga L, Somayajula S, Chen EY, et al. Gender differences in reward-related decision processing under stress. Soc Cogn Affect Neurosci. 2012;7(4):476–84.  https://doi.org/10.1093/scan/nsr026.CrossRefPubMedGoogle Scholar
  33. 33.
    Turel O. Organizational deviance via social networking site use: the roles of inhibition, stress and sex differences. Personal Individ Differ. 2017;119(1):311–6.  https://doi.org/10.1016/j.paid.2017.08.002.
  34. 34.
    DeSoto MC, Salinas M. Neuroticism and cortisol: the importance of checking for sex differences. Psychoneuroendocrinology. 2015;62:174–9.  https://doi.org/10.1016/j.psyneuen.2015.07.608.CrossRefPubMedGoogle Scholar
  35. 35.
    Kendler KS, Gardner CO. Sex differences in the pathways to major depression: a study of opposite-sex twin pairs. Am J Psychiatr. 2014;171(4):426–35.  https://doi.org/10.1176/appi.ajp.2013.13101375.CrossRefPubMedGoogle Scholar
  36. 36.
    Greenfield SF. Back SE, Lawson K, Brady KT. Substance abuse in women. Psychiatr Clin North Am. 2010;33(2):339–55.  https://doi.org/10.1016/j.psc.2010.01.004. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Turel O, Bechara A. Social Networking Site use while driving: ADHD and the mediating roles of stress, self-esteem and craving. Front Psychol. 2016;7.  https://doi.org/10.3389/fpsyg.2016.00455.
  38. 38.
    Ha JH, Yoo HJ, Cho IH, Chin B, Shin D, Kim JH. Psychiatric comorbidity assessed in Korean children and adolescents who screen positive for internet addiction. J Clin Psychiatry. 2006;67(5):821–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Hahn E, Gottschling J, Spinath FM. Short measurements of personality - validity and reliability of the GSOEP big five inventory (BFI-S). J Res Pers. 2012;46(3):355–9.  https://doi.org/10.1016/j.jrp.2012.03.008.CrossRefGoogle Scholar
  40. 40.
    Bech P, Gudex C, Johansen KS. The WHO (ten) well-being index: validation in diabetes. Psychother Psychosom. 1996;65(4):183–90.  https://doi.org/10.1159/000289073. CrossRefPubMedGoogle Scholar
  41. 41.
    Steenackers K, Cassady B, Brengman M, Willems K. Measuring Facebook Addiction among adults: validating the Bergen Facebook addiction scale in a non-student sample. J Behav Addict. 2016;5:41.CrossRefGoogle Scholar
  42. 42.
    Pontes HM, Andreassen CS, Griffiths MD. Portuguese validation of the Bergen Facebook addiction scale: an empirical study. Int J Ment Heal Addict. 2016;14(6):1062–73.  https://doi.org/10.1007/s11469-016-9694-y.CrossRefGoogle Scholar
  43. 43.
    Blom EH, Bech P, Högberg G, Larsson JO, Serlachius E. Screening for depressed mood in an adolescent psychiatric context by brief self-assessment scales – testing psychometric validity of WHO-5 and BDI-6 indices by latent trait analyses. Health Qual Life Outcomes. 2012;10(1):149.  https://doi.org/10.1186/1477-7525-10-149.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Topp CW, Østergaard SD, Søndergaard S, Bech P. The WHO-5 well-being index: a systematic review of the literature. Psychother Psychosom. 2015;84(3):167–76.CrossRefPubMedGoogle Scholar
  45. 45.
    Primack BA. The WHO-5 wellbeing index performed the best in screening for depression in primary care. Evid Based Med. 2003;8(5):155.CrossRefGoogle Scholar
  46. 46.
    Heun R, Bonsignore M, Barkow K, Jessen F. Validity of the five-item WHO well-being index (WHO-5) in an elderly population. Eur Arch Psychiatry Clin Neurosci. 2001;251(2):27–31.  https://doi.org/10.1007/bf03035123.CrossRefGoogle Scholar
  47. 47.
    Lucas-Carrasco R, Allerup P, Bech P. The validity of the WHO-5 as an early screening for apathy in an elderly population. Curr Gerontol Geriatr Res. 2012;2012:5.  https://doi.org/10.1155/2012/171857. CrossRefGoogle Scholar
  48. 48.
    Ellison NB, Steinfield C, Lampe C. The benefits of Facebook “friends”: social capital and college students' use of online social network sites. J Comput-Mediat Commun. 2007;12(4):1143–168Google Scholar
  49. 49.
    Turel O, Bechara A. A triadic reflective-impulsive-interoceptive awareness model of general and impulsive information system use: behavioral tests of neuro-cognitive theory. Front Psychol. 2016;7:601.  https://doi.org/10.3389/fpsyg.2016.00601.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Dawson JF, Richter AW. Probing three-way interactions in moderated multiple regression: development and application of a slope difference test. J Appl Psychol. 2006;91(4):917–26.  https://doi.org/10.1037/0021-9010.91.4.917.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Information Systems and Decision SciencesCalifornia State University, FullertonFullertonUSA
  3. 3.College of Management Academic StudiesRishon LeZionIsrael

Personalised recommendations