Journal of Productivity Analysis

, Volume 45, Issue 2, pp 197–214 | Cite as

Exploring cost dominance in crop farming systems between high and low pesticide use

  • Jean-Philippe Boussemart
  • Hervé Leleu
  • Oluwaseun Ojo


The purpose of this paper is to assess cost dominance in direct inputs between arable crop-based systems using low or high pesticide levels per hectare. Our investigation departs from a traditional efficiency analysis and aims at comparing two minimal direct cost functions excluding pesticide expenses. This means that we evaluate the gap between two efficient frontiers instead of focusing on individual farm inefficiency scores. Our only objective is to compare two optimal cost benchmarks for systems respectively defined with high or low pesticide levels per hectare by varying their scale and output mix. A robust approach frontier is introduced to control the influence of potential outliers and unobserved heterogeneity. Based on 707 French crop farms observed in 2008, our simulations show that agricultural practices using less pesticide per hectare are unambiguously more cost-competitive in terms of direct inputs while inducing no other substitution costs. This cost dominance is a robust phenomenon regardless of the size and scope of crop activities, which supports more ecofriendly practices.


Pesticide use (PU) Arable crops farming systems Activity analysis model (AAM) Non parametric robust cost function (NPRCF) Hamming distance (HD) 

JEL classification

C61 D22 D24 Q12 



This research was supported by the “Agence Nationale de la Recherche” on the project “Popsy: Arable Crop Production, Environment and Regulation”, Decision No. ANR-08-STRA-12-05. We used a database of CERFRANCE Alliance Centre. Special thanks to Loïc Guindé, Henri-Bertrand Lefer, and Frederic Chateau for assisting us in the database construction.


  1. Aubertot JN, Barbier JM, Carpentier A, Gril JJ, Guichard L, Lucas P, Savary S, Sasvini I, Voltz M (2005) Pesticides, agriculture and the environment. Reducing the use of pesticides and limiting their environmental impact. Summary of the Collective Scientific Expert Report INRA and CEMAGREF, FranceGoogle Scholar
  2. Barbier JM, Bonicel L, Dubeuf JP, Guichard L, Halska J, Meynard JM, Schmidt A (2010) Analyse des Jeux d’Acteurs. In: Ecophyto, R&D (ed), rapport d’expertise financé par le Ministère de l’agriculture et de la pêche et par le Ministère de l’écologie, de l’énergie, du développement durable et de l’aménagement du territoire, Tome VII. p 74Google Scholar
  3. Baumol WJ (1958) Activity analysis in one lesson. Am Econ Rev 58(5):837–873Google Scholar
  4. Beltrá-Esteve M, Gómez-Limon J-A, Picazo-Tadeo AJ, Reig Martinez E (2014) A metafrontier directional distance function approach to assessing eco-efficiency. J Prod Anal 41:69–83CrossRefGoogle Scholar
  5. Ben-tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88(3):411–421CrossRefGoogle Scholar
  6. Boussemart JP, Leleu H, Ojo O (2011) Could society’s willingness to reduce pesticide use be aligned with farmers’ economic self-interest? Ecol Econ 70(10):1797–1804CrossRefGoogle Scholar
  7. Butault JP, Dedryver CA, Gary C, Guichard L, Jacquet F, Meynard JM, Nicot P, Pitrat M, Reau R, Sauphanor B,Savini I, Volay T, (2010) Ecophyto R&D. Quelles voies pour réduire l’usage des pesticides ? Synthèse du rapport d’étude, INRA Editeur (France), p 90Google Scholar
  8. Buttel FH (2003) Internalizing the societal costs of agricultural production. Plant Physiol 133(4):1656–1665CrossRefGoogle Scholar
  9. Carpentier A, Barbier JM, Bontems P, Lacroix A, Laplana R, Lemarié S, Turpin N (2005) Aspects économiques de la régulation des pollutions par les pesticides, In: INRA (ed), Pesticides, agriculture et environnement: réduire l’utilisation des pesticides et en limiter les impacts environnementaux, Rapport de l’Expertise Collective INRA/CEMAGREF, chapitre 5Google Scholar
  10. Cazals C, Florens JP, Simar L (2002) Nonparametric frontier estimation: a robust approach. J Econom 106:1–25CrossRefGoogle Scholar
  11. Chambers RG, Lichtenberg E (1994) Simple econometrics of pesticide productivity. Am J Agric Econ 76(3):407–417CrossRefGoogle Scholar
  12. Chambers RG, Karagiannis G, Tzouvelekas V (2010) Another look at pesticide productivity and pest damage. Am J Agric Econ 92(5):1401–1419CrossRefGoogle Scholar
  13. Daraio C, Simar L (2007) Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach. J Prod Anal 28(1–2):13–32CrossRefGoogle Scholar
  14. De Koeijer TJ, Wossink GAA, Struik PC, Renkema JA (2002) Measuring agricultural sustainability in terms of efficiency: the case of Dutch sugar beet growers. J Environ Manag 66(1):9–17CrossRefGoogle Scholar
  15. Dervaux B, Leleu H, Escano G, Vincke B (1997) Efficacité productive des services hospitaliers et qualité des soins. In: Sailly JC et Lebrun T (eds), 10 ans d’avancées en économie de la santé, Actes XIXèmes Journées des Economistes de la Santé Français, John Libbey Eurotext, 147–170Google Scholar
  16. Dervaux B, Leleu H, Minvielle E, Valdmanis V, Aegerter P, Guidet B (2009) Performance of French intensive care units: a directional distance function approach at the patient level. Int J Prod Econ 120(2):585–594CrossRefGoogle Scholar
  17. Fernandez-Cornejo J, Jans S, Smith M (1998) Issues in the economics pesticide use in agriculture: a review of the empirical evidence. Rev Agric Econ 20(2):462–488Google Scholar
  18. Greene CR, Cuperus GW (1991) Integrated pest management (IPM) in the vegetable industry during the 1980s. US Department of Agriculture Economic Research Service Publication, No. AGES 9107Google Scholar
  19. Hoang V, Alauddin M (2012) Input-orientated data envelopment analysis framework for measuring and decomposing economic, environmental and ecological efficiency: an application to OECD agriculture. Environ Resour Econ 51(3):431–452CrossRefGoogle Scholar
  20. Jacquet F, Butault JP, Guichard L (2011) An economic analysis of the possibility of reducing pesticides in French field crops. Ecol Econ 70(9):1638–1648CrossRefGoogle Scholar
  21. Kaufmann A (1975) Introduction to the theory of fuzzy subsets: volume 1: fundamental theoretical elements. Academic Press, New YorkGoogle Scholar
  22. Koopmans TC (1951) Activity analysis of production and allocation. Cowles Commission for Research in Economics Monograph no. 13. Wiley, New YorkGoogle Scholar
  23. Kuosmanen T, Pemsl D, Wesseler J (2006) Specification and estimation of production functions involving damage control inputs: a two-stage, semiparametric approach. Am J Agric Econ 88(2):499–511CrossRefGoogle Scholar
  24. Lichtenberg E, Zilberman D (1986) The econometrics of damage control: why specification matters. Am J Agric Econ 68(2):261–273CrossRefGoogle Scholar
  25. Loyce C, Meynard JM, Bouchard C, Rolland B, Lonnet P, Bataillon P, Bernicot M, Bonnefoy M, Charrier X, Debote B, Demarquet T, Duperrier B, Félix I, Heddadj D, Leblanc O, Leleu M, Mangin P, Méausoone M, Doussinault G (2012) Growing winter wheat cultivars under different management intensities in France: a multicriteria assessment based on economic, energetic and environmental indicators. Field Crops Res 125:167–178CrossRefGoogle Scholar
  26. Nave S, Jacquet F, Jeuffroy MH (2013) Why wheat farmers could reduce chemical inputs: evidence from social, economic, and agronomic analysis. Agron Sustain Dev 33(4):795–807CrossRefGoogle Scholar
  27. Nemecek T, Huguenin-Elie O, Dubois D, Gaillard G, Schaller B, Chervet A (2011) Life cycle assessment of Swiss farming systems: II. Extensive Intensive Prod Agric Syst 104(3):233–245Google Scholar
  28. Norton GW, Mullen J (1994) Economic evaluation of integrated pest management programs: a literature review. Virginia Cooperative Extension Publication, Virginia Polytechnic Institute and State University, Blacksburg, VA, p 112Google Scholar
  29. Piot-Lepetit I, Le Moing M (2007) Productivity and environmental regulation: the effect of the nitrates directive in the French pig sector. Environ Resour Econ 38(4):433–446CrossRefGoogle Scholar
  30. Pretty JN, Morison JLL, Hine RE (2003) Reducing food poverty by increasing agricultural sustainability in developing countries. Agric Ecosyst Environ 95:217–234CrossRefGoogle Scholar
  31. Robertson GP, Swinton SM (2005) Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front Ecol Environ 3(1):38–46CrossRefGoogle Scholar
  32. Saint-Ges V, Bélis-Bergouignan MC (2009) Ways of reducing pesticides use in Bordeaux vineyards. J Clean Prod 17(18):1644–1653CrossRefGoogle Scholar
  33. Shephard R (1953) Cost and production functions. Princeton University Press, New JerseyGoogle Scholar
  34. Simar L, Wilson PW (2008) Statistical inference in nonparametric frontier models recent developments and perspectives. In: Fried HO, Knox-Lovell CA, Schmidt SS (eds) The measurement of productive efficiency and productivity growth. Oxford University Press, OxfordGoogle Scholar
  35. Tegtmeier EM, Duffy DM (2004) External costs of agricultural production in the United States. Int J Agric Sustain 2(1):1473–5903CrossRefGoogle Scholar
  36. Vanloqueren G, Baret PV (2008) Why are ecological, low-input, multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural ‘lock-in’ case study. Ecol Econ 66(2–3):436–446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jean-Philippe Boussemart
    • 1
  • Hervé Leleu
    • 2
  • Oluwaseun Ojo
    • 2
  1. 1.University of Lille 3 and IÉSEG School of Management, LEM-CNRS (UMR 9221)LilleFrance
  2. 2.LEM-CNRS (UMR 9221) and IÉSEG School of ManagementLilleFrance

Personalised recommendations