Skip to main content
Log in

Goodness of fit tests in stochastic frontier models

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

In this paper we discuss goodness of fit tests for the distribution of technical inefficiency in stochastic frontier models. If we maintain the hypothesis that the assumed normal distribution for statistical noise is correct, the assumed distribution for technical inefficiency is testable. We show that a goodness of fit test can be based on the distribution of estimated technical efficiency, or equivalently on the distribution of the composed error term. We consider both the Pearson χ 2 test and the Kolmogorov–Smirnov test. We provide simulation results to show the extent to which the tests are reliable in finite samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abadir KM, Magnus JR (2005) Matrix algebra (Econometric exercises, Volume 1). Cambridge University Press, Cambridge

    Google Scholar 

  • Aigner DJ, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econom 6:21–37

    Article  Google Scholar 

  • Bai J (2003) Testing parametric conditional distributions of dynamic models. Rev Econ Stat 85:531–549

    Article  Google Scholar 

  • Bera AK, Mallick NC (2002) Information matrix tests for the composed error frontier model. In: Balakrishnan N (ed) Advances on methodological and applied aspects of probability and statistics. Gordon and Breach Science Publishers, London

    Google Scholar 

  • Chen Y.-T, Wang H.-J (2009) “Centered-Residuals-Based Moment Estimator and Test for Stochastic Frontier Models.” unpublished manuscript, Academia Sinica

  • Coelli T (1995) Estimators and hypothesis tests for a stochastic frontier function. J Productivity Anal 6:247–265

    Article  Google Scholar 

  • Coelli T, Prasada Rao DS, O’Donnell CJ, Battese GE (2005) An introduction to efficiency and productivity analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Giné E, Zinn J (1990) Bootstrapping general empirical measures. Annals of Probability 18:851–869

    Article  Google Scholar 

  • Greene WH (1980a) Maximum likelihood estimation of econometric frontier functions. J Econom 13:27–56

    Article  Google Scholar 

  • Greene WH (1980b) On the estimation of a flexible frontier production model. J Econom 13:101–115

    Article  Google Scholar 

  • Greene WH (1990) A gamma-distributed stochastic frontier model. J Econom 46:141–164

    Article  Google Scholar 

  • Greene WH (2008) Econometric Analysis, 6th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hansen LP (1982) Large sample properties of generalized method of moments estimators. Econometrica 50:1029–1054

    Article  Google Scholar 

  • Heckman J (1984) The χ 2 goodness of fit for models estimated from microdata. Econometrica 52:1543–1548

    Article  Google Scholar 

  • Johnson NL, Kotz S (1970) Continuous univariate distributions–1. Boston, Houghton Mifflin

    Google Scholar 

  • Jondrow J, Lovell CAK, Materov IS, Schmidt P (1982) On the estimation of technical efficiency in the stochastic frontier production function model. J Econom 19:233–238

    Article  Google Scholar 

  • Khmalzade EV (1981) Martingale approach to the theory of goodness of fit test. Theory probab Appl 26:240–257

    Google Scholar 

  • Khmalzade EV (1988) An innovation approach in goodness of fit tests in R m. Ann Stat 16:1503–1516

    Article  Google Scholar 

  • Khmalzade EV (1993) Goodness of fit problem and scanning innovation martingales. Ann Stat 21:798–829

    Article  Google Scholar 

  • Kopp RJ, Mullahy J (1990) Moment-based estimation and testing of stochastic frontier models. J Econom 46:165–183

    Article  Google Scholar 

  • Lee L-F (1983) A test for distributional assumptions for the stochastic frontier functions. J Econom 22:245–267

    Article  Google Scholar 

  • Meeusen W, van den Broeck J (1977) Efficient estimation from cobb-douglas production functions with composed error. Int Econ Rev 18:435–444

    Article  Google Scholar 

  • Newey WK (1985) Maximum likelihood specification testing and conditional moment tests. Econometrica 53:1047–1070

    Article  Google Scholar 

  • Pitt MM, Lee LF (1981) The measurement and sources of technical inefficiency in the indonesian weaving industry. J Dev Econ 9:43–64

    Article  Google Scholar 

  • Ruppert D, Carroll RJ (1980) Trimmed least squares estimation in the linear model. J Am Stat Assoc 75:828–838

    Article  Google Scholar 

  • Schmidt P, Lin T-F (1984) Simple tests for alternative specifications in stochastic frontier models. J Econom 24:349–361

    Article  Google Scholar 

  • Simar L, Wilson PW (2010) Inferences from cross-sectional stochastic frontier models. Econom Rev 29:62–98

    Article  Google Scholar 

  • Stevenson RE (1980) Likelihood functions for generalized stochastic frontier estimation. J Econom 13:57–66

    Article  Google Scholar 

  • Stute W, Gonzáles Manteiga W, Presedo Quindimil M (1993) Bootstrap based goodness of fit tests. Metrika 40:243–256

    Article  Google Scholar 

  • Tallis GM (1983) Goodness of fit. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences, vol 3. Wiley, New York, pp 451–461

    Google Scholar 

  • Tauchen G (1985) Diagnostic testing and evaluation of maximum likelihood models. J Econom 30:415–444

    Article  Google Scholar 

  • Waldman D (1982) A stationary point for the stochastic frontier likelihood. J Econom 18:275–279

    Article  Google Scholar 

  • Wang WS, Schmidt P (2009) On the distribution of estimated technical efficiency in stochastic frontier models. J Econom 148:36–45

    Article  Google Scholar 

  • White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1–16

    Article  Google Scholar 

  • Zellner A, Revankar N (1970) Generalized production functions. Rev Econ Stud 37:241–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 59 kb)

Appendices

Appendix A

In this Appendix we establish Eq. 8 of the text. We write \( \bar{g}(\theta_{0} ) = P - \hat{P} \), where P is the (k − 1)-dimensional vector with jth element p j  = p j (θ 0) and \( \hat{P} \) is the (k − 1)-dimensional vector with jth element \( \hat{p}_{j} = O_{j} /n \). Also we write \( V(\theta_{0} ) = \Uppi - PP^{\prime } \) where Π is the diagonal matrix with jth diagonal element equal to p j . Now we use the fact (e.g. Abadir and Magnus (2005), p. 87) that

$$ [\Uppi - PP^{\prime } ]^{ - 1} = \Uppi^{ - 1} + {\frac{1}{{1 - P^{\prime } \Uppi^{ - 1} P}}}\Uppi^{ - 1} PP^{\prime } \Uppi^{ - 1} $$
(19)

Therefore

$$ n\bar{g}(\theta_{0} )^{\prime } V(\theta_{0} )^{ - 1} \bar{g}(\theta_{0} ) = n(\hat{P} - P)^{\prime } \Uppi^{ - 1} (\hat{P} - P) + {\frac{n}{{1 - P^{\prime } \Uppi^{ - 1} P}}}(\hat{P} - P)^{\prime } \Uppi^{ - 1} PP^{\prime } \Uppi^{ - 1} (\hat{P} - P) $$
(20)

The first term on the right hand side of (20) equals \( n\sum\nolimits_{j = 1}^{k - 1} {(\hat{p}_{j} - p_{j} )^{2} /p_{j} } = \sum\nolimits_{j = 1}^{k - 1} {(O_{j} - E_{j} )^{2} /E_{j} } \). For the second term, note that \( 1 - P^{\prime } \Uppi^{ - 1} P = 1 - \sum\nolimits_{j = 1}^{k - 1} {p_{j} = p_{k} } \) and that \( (\hat{P} - P)^{\prime } \Uppi^{ - 1} P = (\hat{P} - P)^{\prime } e_{k - 1} \) (where e k−1 is a vector of dimension (k − 1) with each element equal to one) = \( [(1 - \hat{p}_{k} ) - (1 - p_{k} )] = (p_{k} - \hat{p}_{k} ) \). Therefore \( n\bar{g}(\theta_{0} )^{\prime } V(\theta_{0} )^{ - 1} \bar{g}(\theta_{0} ) = \sum\nolimits_{j = 1}^{k - 1} {(O_{j} - E_{j} )^{2} /E_{j} + n(p_{k} - \hat{p}_{k} )^{2} /p_{k} } = \sum\nolimits_{j = 1}^{k} {(O_{j} - E_{j} )^{2} /E_{j} } \).

Appendix B

In this Appendix we discuss the goodness of fit test based on quantiles and its relationship to the Pearson test based on actual and expected cell counts. Suppose that we pick (k − 1) probabilities 0 < p 1 < p 2 ··· < p k−1 < 1. Let the corresponding population quantiles be m 1(θ) < m 2(θ) ··· < m k−1(θ), so that P(y ≤ m j (θ)) = p j , and let the sample quantiles be \( \hat{m}_{1} \le \hat{m}_{2} \cdots \le \hat{m}_{k - 1} \). So now the test will depend on (\( \hat{m} - m \)), the vector whose jth element equals (\( \hat{m}_{j} - m_{j} (\theta ) \)), and the test statistic equals \( n(\hat{m} - m(\hat{\theta }))^{\prime } W(\hat{m} - m(\hat{\theta })) \) with an appropriate choice of W.

To see how this compares to the CMT test, we note that \( \sqrt n (\hat{m}_{j} - m_{j} (\theta )) \) is asymptotically normal, and so it must be expressable as an average (plus an asymptotically negligible term). This is the “influence function representation,” which is given by:

$$ \sqrt n (\hat{m}_{j} - m_{j} (\theta )) = {\frac{1}{\sqrt n }}\sum\limits_{i = 1}^{n} {r_{ij} } (\theta ) + o_{p} (1) $$
(21)

where o p (1) is an asymptotically negligible term (i.e., it converges in probability to zero), and where

$$ r_{ij} (\theta ) = {\frac{1}{{f(m_{j} (\theta ))}}}[p_{j} - 1(y_{i} \le m_{j} (\theta ))] $$
(22)

where f is the pdf of y. See, for example, Ruppert and Carroll (1980), p. 832. Therefore the test based on (\( \hat{m} - m \)) is equivalent in large samples to the CMT test based on the moment conditions \( E[1(y \le m_{j} (\theta )) - p_{j} ], j = 1,2, \ldots k - 1 \). This is an overlapping set of cells. However, it is also equivalent to consider the non-overlapping cells: \( A_{1} = \{ y\left| {y \le m_{1} } \right.(\theta )\} ,\,A_{2} = \{ y\left| {m_{1} (\theta ) < y \le m_{2} } \right.(\theta )\} \), etc. The resulting test is the CMT test based on observed versus actual cell counts, as discussed in the text.

Appendix C

In this Appendix we derive analytically the variance matrix C used in the conditional moment test, for the case of a normal distribution. We wish to evaluate

$$ C_{11} = E\left( {ss^{\prime } } \right),\quad C_{12} = E\left( {sg^{\prime } } \right),\quad C_{22} = E\left( {gg^{\prime } } \right) $$
(23)

Here s = s(y,θ) is the score function for the normal distribution, given by

$$ s(y,\theta ) = \left[ {\begin{array}{*{20}c} {{\frac{1}{{\sigma^{2} }}}(y - \mu )} \\ {{\frac{ - 1}{{2\sigma^{2} }}} + {\frac{1}{{2\sigma^{4} }}}(y - \mu )^{2} } \\ \end{array} } \right] $$
(24)

and \( g = g(y,\theta ) \) is the vector whose jth element equals [1(y ∈ A j ) − p j ].

It is well known that C 11 is the information matrix for the normal distribution, given by

$$ \left[ {\begin{array}{*{20}c} {{\frac{1}{{\sigma^{2} }}}} & 0 \\ 0 & {{\frac{1}{{2\sigma^{4} }}}} \\ \end{array} } \right] $$
(25)

Also C 22 equals the matrix V(θ) as defined in the discussion following Eq. 6 of the text.

This leaves the submatrix C 12. It is of dimension 2 by (k − 1). We will evaluate in turn the (1,j) and (2,j) elements of this matrix. To do so we make the reasonable assumption that the cells are intervals, so that A j  = (a, b], where for notational simplicity we do not express the subscript “j” that should appear on a and b.Then element (1,j) of C 12 equals

$$ \begin{aligned} {\frac{1}{{\sigma^{2} }}}E(y - \mu )[1(y \in A_{j} ) - p_{j} ] = {\frac{1}{{\sigma^{2} }}}Ey[1(y \in A_{j} ) - p_{j} ] \\ = & & {\frac{1}{{\sigma^{2} }}}Ey1(y \in A_{j} ) - {\frac{1}{{\sigma^{2} }}}p_{j} \mu \\ = & {\frac{{p_{j} }}{{\sigma^{2} }}}[E(y\left| {a < y \le b) - \mu ]} \right. \\ = & {\frac{1}{{\sigma^{2} }}}\left[ {\varphi \left( {{\frac{a - \mu }{\sigma }}} \right) - \varphi \left( {{\frac{b - \mu }{\sigma }}} \right)} \right], \\ \end{aligned} $$

where “φ“is the standard normal density function. Here we have evaluated the conditional expectation \( E\left( {y|a < y \le b} \right) = \mu + {\frac{1}{{p_{j} }}}\left[ {\varphi \left( {{\frac{a - \mu }{\sigma }}} \right) - \varphi \left( {{\frac{b - \mu }{\sigma }}} \right)} \right] \) as in Johnson and Kotz (1970), equation (79), p. 81.

Similarly element (2,j) of C 12 equals

$$ \begin{aligned} E\left[ {{\frac{ - 1}{{2\sigma^{2} }}} + {\frac{1}{{2\sigma^{4} }}}(y - \mu )^{2} } \right][1(y \in A_{j} ) - p_{j} ] \\ = & E\left[ {{\frac{1}{{2\sigma^{4} }}}(y - \mu )^{2} } \right][1(y \in A_{j} ) - p_{j} ] \\ = & {\frac{1}{{2\sigma^{4} }}}E(y - \mu )^{2} 1(a < y \le b) - {\frac{{p_{j} }}{{2\sigma^{4} }}} \\ = & {\frac{1}{{2\sigma^{4} }}}Ey^{2} 1(y \in A_{j} ) + {\frac{1}{{2\sigma^{4} }}}( - 2\mu )Ey1(y \in A_{j} ) + {\frac{1}{{2\sigma^{4} }}}\mu^{2} p_{j} - {\frac{{p_{j} }}{{2\sigma^{4} }}} \\ = & {\frac{1}{{2\sigma^{4} }}}Ey^{2} 1(y \in A_{j} ) - {\frac{\mu }{{\sigma^{4} }}}p_{j} E(y\left| {y \in A_{j} )} \right. + {\frac{{p_{j} \mu^{2} }}{{2\sigma^{4} }}} - {\frac{{p_{j} }}{{2\sigma^{4} }}}, \\ \end{aligned} $$

where \( Ey^{2} 1(y \in A_{j} ) = p_{j} \text{var} (y\left| {y \in A_{j} )} \right. + p_{j} \left[ {E(y\left| {y \in A_{j} )} \right.} \right]^{2} \). Furthermore, \( Ey^{2} 1(y \in A_{j} ) = p_{j} \sigma^{2} \left\{ {1 - {\frac{b\phi (b) - a\phi (a)}{\Upphi (b) - \Upphi (a)}} - \left[ {{\frac{\phi (b) - \phi (a)}{\Upphi (b) - \Upphi (a)}}} \right]^{2} } \right\} + p_{j} \left[ {\mu - \sigma {\frac{\phi (b) - \phi (a)}{\Upphi (b) - \Upphi (a)}}} \right]^{2} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W.S., Amsler, C. & Schmidt, P. Goodness of fit tests in stochastic frontier models. J Prod Anal 35, 95–118 (2011). https://doi.org/10.1007/s11123-010-0188-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-010-0188-9

Keywords

JEL Classification

Navigation