Advertisement

Prevention Science

, Volume 20, Issue 1, pp 21–29 | Cite as

Preventive Effect Heterogeneity: Causal Inference in Personalized Prevention

  • George W. HoweEmail author
Article

Abstract

This paper employs a causal inference framework to explore two logically distinct forms of preventive effect heterogeneity relevant for studying variation in preventive effect as a basis for developing more personalized interventions. Following VanderWeele (2015), I begin with a discussion of causal interaction involving manipulable moderators that combine to yield more complex nonadditive effects. This is contrasted with effect heterogeneity, which involves variation in causal structure indexed by stable characteristics of populations or contexts. The paper then discusses one particularly promising approach, the baseline target moderated mediation (BTMM) design, which uses theoretically informed baseline target moderators to strengthen causal inference, suggesting methods for using BTMM designs to develop targeting strategies for personalized prevention. It presents examples of recent intervention trials that apply these different forms of moderation, and discusses causal inference and the problem of moderation confounding, reviewing methods for minimizing its impact, including recent advances in the use of propensity score matching.

Keywords

Research design Causal inference Personalized prevention Moderation 

Notes

Compliance with Ethical Standards

Funding

This manuscript was supported in part by National Institute of Mental Health grant number R01-MH040859.

Conflicts of Interest

The author declares that he has no conflict of interest.

Ethical Approval

The manuscript does not report any empirical findings; no study was conducted requiring ethical approval.

Informed Consent

The manuscript does not report any empirical findings; no study was conducted requiring informed consent.

References

  1. Bierman, K. L., Domitrovich, C. E., Nix, R. L., Welsh, J. A., & Gest, S. D. (2014). Integrating evidence-based preschool programs to support social-emotional and cognitive development. In M. Boivin, K. L. Bierman, M. Boivin, & K. L. Bierman (Eds.), Promoting school readiness and early learning: Implications of developmental research for practice (pp. 231–252). New York: Guilford Press.Google Scholar
  2. Brand, J. E., & Thomas, J. S. (2013). Causal effect heterogeneity. In S. L. Morgan (Ed.), Handbook of causal analysis for social research (pp. 189–214). New York: Springer.CrossRefGoogle Scholar
  3. Brody, G. H., Chen, Y.-f., Beach, S. R. H., Kogan, S. M., Yu, T., DiClemente, R. J., et al. (2014). Differential sensitivity to prevention programming: A dopaminergic polymorphism-enhanced prevention effect on protective parenting and adolescent substance use. Health Psychology, 33, 182–191. doi: 10.1037/a0031253.CrossRefGoogle Scholar
  4. Cardemil, E. V., Reivich, K. J., & Seligman, M. E. P. (2002). The prevention of depressive symptoms in low-income minority middle school students. Prevention & Treatment, 5, Article 8. Retrieved from http://psycnet.apa.org/journals/pre/5/8. doi: 10.1037/1522-3736.5.1.58a.
  5. Cho, J., Kogan, S. M., & Brody, G. H. (2016). Genetic moderation of transactional relations between parenting practices and child self-regulation. Journal of Family Psychology. doi: 10.1037/fam0000228.
  6. Clarke, G. N., Hornbrook, M., Lynch, F., Polen, M., Gale, J., Beardslee, W., et al. (2001). A randomized trial of a group cognitive intervention for preventing depression in adolescent offspring of depressed parents. Archives of General Psychiatry, 58, 1127.CrossRefGoogle Scholar
  7. Collins, L. M., Murphy, S. A., & Bierman, K. L. (2004). A conceptual framework for adaptive preventive interventions. Prevention Science: The Official Journal Of The Society For Prevention Research, 5, 185–196.CrossRefGoogle Scholar
  8. Dumka, L. E., Gonzales, N. A., Bonds, D. D., & Millsap, R. E. (2009). Academic success of Mexican origin adolescent boys and girls: The role of mothers’ and fathers’ parenting and cultural orientation. Sex Roles, 60, 588–599. doi: 10.1007/s11199-008-9518-z.CrossRefGoogle Scholar
  9. Falloon, I. R. H., Shanahan, W., & Laporta, M. (1992). Prevention of major depressive episodes: Early intervention with family-based stress management. Journal of Mental Health, 1, 53–60. doi: 10.3109/09638239209034511.CrossRefGoogle Scholar
  10. Ghitza, U. E. (2015). A commentary on ‘A new initiative on precision medicine’. Frontiers in Psychiatry, 6.Google Scholar
  11. Glymour, C., & Glymour, M. R. (2014). Commentary: Race and sex are causes. Epidemiology (Cambridge, Mass.), 25, 488–490. doi: 10.1097/EDE.0000000000000122.CrossRefGoogle Scholar
  12. Gonzales, N. A., Dumka, L. E., Millsap, R. E., Gottschall, A., McClain, D. B., Wong, J. J., et al. (2012). Randomized trial of a broad preventive intervention for Mexican American adolescents. Journal of Consulting and Clinical Psychology, 80, 1–16. doi: 10.1037/a0026063.CrossRefGoogle Scholar
  13. Green, K. M., & Stuart, E. A. (2014). Examining moderation analyses in propensity score methods: Application to depression and substance use. Journal of Consulting and Clinical Psychology, 82, 773–783. doi: 10.1037/a0036515.CrossRefGoogle Scholar
  14. Gunasekara, F. I., Carter, K., & Blakely, T. (2011). Change in income and change in self-rated health: Systematic review of studies using repeated measures to control for confounding bias. Social Science & Medicine (1982), 72, 193–201. doi: 10.1016/j.socscimed.2010.10.029.CrossRefGoogle Scholar
  15. Harder, V. S., Stuart, E. A., & Anthony, J. C. (2010). Propensity score techniques and the assessment of measured covariate balance to test causal associations in psychological research. Psychological Methods, 15, 234–249. doi: 10.1037/a0019623.CrossRefGoogle Scholar
  16. Howe, G. W., Reiss, D., & Yuh, J. (2002). Can prevention trials test theories of etiology? Development and Psychopathology, 14, 673–694. doi: 10.1017/S0954579402004029.CrossRefGoogle Scholar
  17. Howe, G. W., Beach, S., & Brody, G. (2010). Microtrial methods for translating gene-environment dynamics into preventive interventions. Prevention Science, 11, 343–354. doi: 10.1007/s11121-010-0177-2.CrossRefGoogle Scholar
  18. Howe, G. W., Beach, S. R. H., Brody, G. H., & Wyman, P. A. (2016). Translating genetic research into preventive intervention: The baseline target moderated mediator design. Frontiers In Psychology, 1–9. doi: 10.3389/fpsyg.2015.01911.
  19. Josephy, H., Vansteelandt, S., Vanderhasselt, M.-A., & Loeys, T. (2015). Within-subject mediation analysis in AB/BA crossover designs. The International Journal of Biostatistics, 11, 1–22. doi: 10.1515/ijb-2014-0057.CrossRefGoogle Scholar
  20. Kaufman, J. S. (2014). Commentary: Race: Ritual, regression, and reality. Epidemiology (Cambridge, Mass.), 25, 485–487. doi: 10.1097/EDE.0000000000000117.CrossRefGoogle Scholar
  21. Kidd, K. K. (1993). Associations of disease with genetic markers: Déjà vu all over again. American Journal of Medical Genetics, 48, 71–73.CrossRefGoogle Scholar
  22. Liu, W., Kuramoto, S. J., & Stuart, E. A. (2013). An introduction to sensitivity analysis for unobserved confounding in nonexperimental prevention research. Prevention Science, 14, 570–580. doi: 10.1007/s11121-012-0339-5.CrossRefGoogle Scholar
  23. MacKinnon, D. P., Taborga, M. P., & Morgan-Lopez, A. A. (2002). Mediation designs for tobacco prevention research. Drug and Alcohol Dependence, 68, S69–S83. doi: 10.1016/S0376-8716(02)00216-8.CrossRefGoogle Scholar
  24. McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114, 376–390. doi: 10.1037/0033-2909.114.2.376.CrossRefGoogle Scholar
  25. Multisite_Violence_Prevention_Project. (2014). Implementation and process effects on prevention outcomes for middle school students. Journal of Clinical Child and Adolescent Psychology, 43, 473–485. doi: 10.1080/15374416.2013.814540.CrossRefGoogle Scholar
  26. Nolen-Hoeksema, S. (2001). Gender differences in depression. Current Directions in Psychological Science, 10, 173.CrossRefGoogle Scholar
  27. Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
  28. Pearl, J. (2012). The causal mediation formula—A guide to the assessment of pathways and mechanisms. Prevention Science, 13, 426–436. doi: 10.1007/s11121-011-0270-1.CrossRefGoogle Scholar
  29. Pelham, W. E., Fabiano, G. A., Waxmonsky, J. G., Greiner, A. R., Gnagy, E. M., Coxe, S., et al. (2016). Treatment sequencing for childhood ADHD: A multiple-randomization study of adaptive medication and behavioral interventions. Journal of Clinical Child & Adolescent Psychology, 45, 396–415. doi: 10.1080/15374416.2015.1105138.CrossRefGoogle Scholar
  30. Perrino, T., Pantin, H., Prado, G., Huang, S., Brincks, A., Howe, G., et al. (2014). Preventing internalizing symptoms among Hispanic adolescents: A synthesis across Familias Unidas trials. Prevention Science, 15, 917–928. doi: 10.1007/s11121-013-0448-9.CrossRefGoogle Scholar
  31. Perrino, T., Brincks, A., Howe, G., Brown, C. H., Prado, G., & Pantin, H. (2016). Reducing internalizing symptoms among high-risk, Hispanic adolescents: Mediators of a preventive family intervention. Prevention Science: The Official Journal Of The Society For Prevention Research, 17, 595–605. doi: 10.1007/s11121-016-0655-2.CrossRefGoogle Scholar
  32. Rassen, J. A., Shelat, A. A., Franklin, J. M., Glynn, R. J., Solomon, D. H., & Schneeweiss, S. (2013). Matching by propensity score in cohort studies with three treatment groups. Epidemiology (Cambridge, Mass.), 24, 401–409. doi: 10.1097/EDE.0b013e318289dedf.CrossRefGoogle Scholar
  33. Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688–701. doi: 10.1037/h0037350.CrossRefGoogle Scholar
  34. Rutter, M. (2007). Proceeding from observed correlation to causal inference: The use of natural experiments. Perspectives on Psychological Science, 2, 377–395. doi: 10.1111/j.1745-6916.2007.00050.x.CrossRefGoogle Scholar
  35. Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. New York: Houghton Mifflin Co..Google Scholar
  36. Stormshak, E. A., & Dishion, T. J. (2009). A school-based, family-centered intervention to prevent substance use: The family check-up. The American Journal of Drug and Alcohol Abuse, 35, 227–232. doi: 10.1080/00952990903005908.CrossRefGoogle Scholar
  37. Teisl, M., Wyman, P. A., Cross, W., West, J., & Sworts, L. (2012). Adaptive intervention to address the needs of children with language delays and behavior problems: Proximal impact on emotion-regulation skill knowledge. Paper presented at the Annual meeting of the Society for Prevention Research, Washington, DC.Google Scholar
  38. VanderWeele, T. J. (2009). On the distinction between interaction and effect modification. Epidemiology (Cambridge, Mass.), 20, 863–871. doi: 10.1097/EDE.0b013e3181ba333c.CrossRefGoogle Scholar
  39. VanderWeele, T. J. (2015). Explanation in causal inference. Methods for mediation and interaction. Oxford: Oxford University Press.Google Scholar
  40. VanderWeele, T. J., & Robins, J. M. (2007). Four types of effect modification: A classification based on directed acyclic graphs. Epidemiology (Cambridge, Mass.), 18, 561–568.CrossRefGoogle Scholar
  41. VanderWeele, T. J., & Robins, J. M. (2008). Empirical and counterfactual conditions for sufficient cause interactions. Biometrika, 95, 49–49.CrossRefGoogle Scholar
  42. VanderWeele, T. J., & Robinson, W. R. (2014a). On the causal interpretation of race in regressions adjusting for confounding and mediating variables. Epidemiology (Cambridge, Mass.), 25, 473–484. doi: 10.1097/EDE.0000000000000105.CrossRefGoogle Scholar
  43. VanderWeele, T. J., & Robinson, W. R. (2014b). Rejoinder: How to reduce racial disparities?: Upon what to intervene? Epidemiology (Cambridge, Mass.), 25, 491–493. doi: 10.1097/EDE.0000000000000124.CrossRefGoogle Scholar
  44. Weiss, N. S. (2017). What findings are needed to advocate personalized (precision) prevention of disease? American Journal of Public Health, 107, 86–87. doi: 10.2105/AJPH.2016.303513.CrossRefGoogle Scholar
  45. Yang, S., Imbens, G. W., Cui, Z., Faries, D. E., & Kadziola, Z. (2016). Propensity score matching and subclassification in observational studies with multi-level treatments. Biometrics, 72, 1055–1065.CrossRefGoogle Scholar

Copyright information

© Society for Prevention Research 2017

Authors and Affiliations

  1. 1.Department of PsychologyGeorge Washington UniversityWashingtonUSA

Personalised recommendations