Prevention Science

, Volume 16, Issue 2, pp 189–199 | Cite as

Universality Properties of School-Based Preventive Intervention Targeted at Cannabis Use

  • Michal Miovský
  • Hana Voňková
  • Roman GabrhelíkEmail author
  • Lenka Šťastná


This study aims to examine the effect of school-based preventive intervention on cannabis use in Czech adolescents with different levels of risk factors and provide evidence of its universality. A randomized controlled prevention trial with six waves was conducted over a period of 33 months. We used a two-level logistic random-intercept model for panel data; we first looked at the statistical significance of the effect of the intervention on cannabis use, controlling for the characteristics of the children and time dummies. Then we analyzed the effects of the interactions between the intervention and the characteristics of the children on cannabis use and related it to the definition of universal preventive interventions. The setting for the study was in basic schools in the Czech Republic in the years 2007–2010. A total of 1,874 sixth-graders (mean age 11.82 years) who completed the baseline testing. According to our results, the prevention intervention was effective. We found all the selected characteristics of the children to be relevant in relation to cannabis use, except their relationships with their friends. We showed empirically that the intervention is universal in two dimensions for the selected characteristics of the children. First, all adolescents who undergo the intervention are expected to benefit. Second, with respect to the effect of the intervention on cannabis use, the total level of individual risk of cannabis use is superior to the composition of the risk factors in the individual risk profile. We present indicative evidence that the drug prevention intervention may be considered a true universal preventive intervention.


Substance use prevention Universal prevention Adolescents Cannabis School-based intervention 



This study was supported by the Grant Agency of the Czech Republic grant no. 13-23290S and Charles University in Prague (PRVOUK-P03/LF1/9).


  1. Allen, J. P., Chango, J., Szwedo, D., Schad, M., & Marston, E. (2012). Predictors of susceptibility to peer influence regarding substance use in adolescence. Child Development, 83, 337–350. doi: 10.1111/j.1467-8624.2011.01682.x.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Becoña, E., Martínez, Ú., Calafat, A., Fernández-Hermid, J. R., Juan, M., Sumnall, H., & Gabrhelík, R. (2013). Parental permissiveness, control, and affect and drug use among adolescents. Psicothema, 25, 292–298. doi: 10.7334/psicothema2012.294.PubMedGoogle Scholar
  3. Bonn-Miller, M. O., Zvolensky, M. J., Bernstein, A., & Stickle, T. R. (2008). Marijuana coping motives interact with marijuana use frequency to predict anxious arousal, panic related catastrophic thinking, and worry among current marijuana users. Depression and Anxiety, 25, 862–873. doi: 10.1002/da.20370.CrossRefPubMedGoogle Scholar
  4. Branstetter, S. A., Furman, W., & Cottrell, L. (2009). The influence of representations of attachment, maternal-adolescent relationship quality, and maternal monitoring on adolescent substance use: A 2-year longitudinal examination. Child Development, 80, 1448–1462. doi: 10.1111/j.1467-8624.2009.01344.x.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Brook, J. S., Balka, E. B., & Whiteman, M. (1999). The risks for late adolescence of early adolescent marijuana use. American Journal of Public Health, 89, 1549–1554.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Brook, J. S., Brook, D. W., Arencibia-Mireles, O., Richter, L., & Whiteman, M. (2001). Risk factors for adolescent marijuana use across cultures and across time. Journal of Genetic Psychology, 162, 357–374. doi: 10.1080/00221320109597489.CrossRefPubMedGoogle Scholar
  7. Brown, C. H., Wang, W., Kellam, S. G., Muthén, B. O., Petras, H., Toyinbo, P., & Windham, A. (2008). Methods for testing theory and evaluating impact in randomized field trials: Intent-to-treat analyses for integrating the perspectives of person, place, and time. Drug and Alcohol Dependence, 95, S74–S104. doi: 10.1016/j.drugalcdep.2007.11.013.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Charvát, M., Jurystová, L., & Miovský, M. (2012). Four-level model of qualifications for the practitioners of the primary prevention of risk behaviour in the school system. Adiktologie, 12, 190–211.Google Scholar
  9. Crano, W. D., Siegel, J. T., Alvaro, E. M., Lac, A., & Hemovich, V. (2008). The at-risk adolescent marijuana nonuser: Expanding the standard distinction. Prevention Science, 9, 129–137. doi: 10.1007/s11121-008-0090-0.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Creemers, H. E., Dijkstra, J. K., Vollebergh, W. A., Ormel, J., Verhulst, F. C., & Huizink, A. C. (2010). Predicting life-time and regular cannabis use during adolescence; the roles of temperament and peer substance use: The TRAILS study. Addiction, 105, 699–708. doi: 10.1111/j.1360-0443.2009.02819.x.CrossRefPubMedGoogle Scholar
  11. Crumley, F. E. (1990). Substance abuse and adolescent suicidal behavior. JAMA, 263, 3051–3056.CrossRefPubMedGoogle Scholar
  12. Dane, A. V., & Schneider, B. H. (1998). Program integrity in primary and early secondary prevention: Are implementation effects out of control? Clinical Psychology Review, 18, 23–45.CrossRefPubMedGoogle Scholar
  13. Diego, M. A., Field, T. M., & Sanders, C. E. (2003). Academic performance, popularity, and depression predict adolescent substance use. Adolescence, 38(149), 35–42.PubMedGoogle Scholar
  14. Eisen, M., Zellman, G. L., & Murray, L. M. (2003). Evaluating the Lions–Quest “Skills for Adolescence” drug education program Second-year behavior outcomes. Addictive Behaviors, 28, 883–897. doi: 10.1016/S0306-4603(01)00292-1.CrossRefPubMedGoogle Scholar
  15. Elliott, D. S., & Mihalic, S. (2004). Issues in disseminating and replicating effective prevention programs. Prevention Science, 5, 47–53.CrossRefPubMedGoogle Scholar
  16. Esposito-Smythers, C., & Spirito, A. (2004). Adolescent substance use and suicidal behavior: A review with implications for treatment research. Alcoholism, Clinical and Experimental Research, 28, 77S–88S.CrossRefPubMedGoogle Scholar
  17. Fergusson, D. M., & Boden, J. M. (2008). Cannabis use and later life outcomes. Addiction, 103, 969–976. doi: 10.1111/j.1360-0443.2008.02221.x. discussion 977-968.CrossRefPubMedGoogle Scholar
  18. Flay, B. R., Biglan, A., Boruch, R. F., Castro, F. G., Gottfredson, D., Kellam, S., & Ji, P. (2005). Standards of evidence: Criteria for efficacy, effectiveness and dissemination. Prevention Science, 6, 151–175.CrossRefPubMedGoogle Scholar
  19. Foxcroft, D. R., & Tsertsvadze, A. (2011). Universal multi-component prevention programs for alcohol misuse in young people. Cochrane Database of Systematic Reviews. DOI: 009310.001002/14651858.CD14009307Google Scholar
  20. Gabrhelik, R., Duncan, A., Miovsky, M., Furr-Holden, C. D., Stastna, L., & Jurystova, L. (2012). "Unplugged": A school-based randomized control trial to prevent and reduce adolescent substance use in the Czech Republic. Drug and Alcohol Dependence, 124, 79–87. doi: 10.1016/j.drugalcdep.2011.12.010.CrossRefPubMedGoogle Scholar
  21. Ghosh-Dastidar, B., Longshore, D. L., Ellickson, P. L., & McCaffrey, D. F. (2004). Modifying pro-drug risk factors in adolescents: Results from project ALERT. Health Education and Behavior, 31, 318–334.CrossRefPubMedGoogle Scholar
  22. Gordon, R. (1987). An operational classification of disease prevention. In J. A. Steinberg & M. M. Silverman (Eds.), Preventing mental disorders (pp. 20–26). Rockville, MD: U.S. Department of Health and Human Services.Google Scholar
  23. Griffin, K. W., Botvin, G. J., Nichols, T. R., & Doyle, M. M. (2003). Effectiveness of a universal drug abuse prevention approach for youth at high risk for substance use initiation. Preventive Medicine, 36, 1–7.CrossRefPubMedGoogle Scholar
  24. Hibell, B., Guttormsson, U., Ahlström, S., Balakireva, O., Bjarnason, T., Kokkevi, A., & Kraus, L. (2012). The 2011 ESPAD report: Substance use among students in 36 European countries. Stockholm, Sweden: The Swedish Council for Information on Alcohol and Other Drugs (CAN) and the Pompidou Group at the Council of Europe.Google Scholar
  25. Hill, L. G., Rosenman, R., Tennekoon, V., & Mandal, B. (2013). Selection effects and prevention program outcomes. Prevention Science. doi: 10.1007/s11121-012-0342-x.PubMedCentralPubMedGoogle Scholar
  26. Johnston, L. D., O’Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2013). Monitoring the future national results on drug use: 2012 overview, key findings on adolescent drug use. Ann Arbor: Institute for Social Research, The University of Michigan.Google Scholar
  27. Kobus, K., & Henry, D. B. (2010). Interplay of network position and peer substance use in early adolescent cigarette, alcohol, and marijuana use. Journal of Early Adolescence, 30, 225–245. doi: 10.1177/0272431609333300.CrossRefGoogle Scholar
  28. Longshore, D., Ellickson, P. L., McCaffrey, D. F., & St Clair, P. A. (2007). School-based drug prevention among at-risk adolescents: Effects of ALERT plus. Health Education and Behavior, 34, 651–668. doi: 10.1177/1090198106294895.CrossRefPubMedGoogle Scholar
  29. Mason, M. J., Mennis, J., Linker, J., Bares, C., & Zaharakis, N. (2013). Peer attitudes effects on adolescent substance use: The moderating role of race and gender. Prevention Science, Feb 13. [Epub ahead of print]Google Scholar
  30. McGrath, Y., Sumnall, H., McVeigh, J., & Bellis, M. (2006). Drug use prevention among young people: A review of reviews. London, UK: National Institute for Health and Clinical Excellence.Google Scholar
  31. Miovsky, M., Stastna, L., Gabrhelik, R., & Jurystova, L. (2011). Evaluation of school-based preventive interventions in the Czech Republic: Examples of good practice. Adiktologie, 11, 236–247.Google Scholar
  32. Mrazek, P. J., & Haggerty, R. J. (1994). Reducing risks for mental disorders: Frontiers for preventive intervention research. Washington, DC: National Academy Press.Google Scholar
  33. Muscat, R. (2002). Students survey in secondary schools: Malta 1999. Malta: Agency against Drug and Alcohol Abuse.Google Scholar
  34. Oesterle, S., Hawkins, J. D., Fagan, S. A., Abbott, R. D., & Catalano, R. F. (2010). Testing the universality of the effects of the communities that care prevention system for preventing adolescent drug use and delinquency. Prevention Science, 11, 411–423. doi: 10.1007/s11121-010-0178-1.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Perez, A., Ariza, C., Sanchez-Martinez, F., & Nebot, M. (2010). Cannabis consumption initiation among adolescents: A longitudinal study. Addictive Behaviors, 35, 129–134. doi: 10.1016/j.addbeh.2009.09.018.CrossRefPubMedGoogle Scholar
  36. Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and longitudinal modeling using Stata (3rd ed.). College Station, TX: Stata Press.Google Scholar
  37. Schaub, M., Gmel, G., Annaheim, B., Mueller, M., & Schwappach, D. (2010). Leisure time activities that predict initiation, progression and reduction of cannabis use: A prospective, population-based panel survey. Drug and Alcohol Review, 29, 378–384. doi: 10.1111/j.1465-3362.2009.00156.x.CrossRefPubMedGoogle Scholar
  38. Shedler, J., & Block, J. (1990). Adolescent drug use and psychological health—A longitudinal inquiry. American Psychologist, 45, 612–630. doi: 10.1037//0003-066x.45.5.612.CrossRefPubMedGoogle Scholar
  39. Sloboda, Z., Stephens, R. C., Stephens, P. C., Grey, S. F., Teasdale, B., Hawthorne, R. D., & Marquette, J. F. (2009). The adolescent substance abuse prevention study: A randomized field trial of a universal substance abuse prevention program. Drug and Alcohol Dependence, 102, 1–10. doi: 10.1016/j.drugalcdep.2009.01.015.CrossRefPubMedGoogle Scholar
  40. Sloboda, Z., Glantz, M. D., & Tarter, R. E. (2012). Revisiting the concepts of risk and protective factors for understanding the etiology and development of substance use and substance use disorders: Implications for prevention. Substance Use and Misuse, 47, 944–962. doi: 10.3109/10826084.2012.663280.
  41. Spoth, R., Shin, C., Guyll, M., Redmond, C., & Azevedo, K. (2006). Universality of effects: An examination of the comparability of long-term family intervention effects on substance use across risk-related subgroups. Prevention Science, 7, 209–224.CrossRefPubMedGoogle Scholar
  42. Storr, C. L., Ialongo, N. S., Kellam, S. G., & Anthony, J. C. (2002). A randomized controlled trial of two primary school intervention strategies to prevent early onset tobacco smoking. Drug and Alcohol Dependence, 66, 51–60. doi: 10.1016/s0376-8716(01)00184-3.CrossRefPubMedGoogle Scholar
  43. Sussman, S., Earleywine, M., Wills, T., Cody, C., Biglan, T., Dent, C. W., & Newcomb, M. D. (2004). The motivation, skills, and decision-making model of “drug abuse” prevention. Substance Use and Misuse, 39, 1971–2016.CrossRefPubMedGoogle Scholar
  44. United Nations Interregional Crime and Justice Research Institute. (2003). School-based drug education: A guide for practitioners and the wider community. Vienna, Austria: United Nations Office for Drug Control and Crime Prevention.Google Scholar
  45. van den Bree, M. B. M., & Pickworth, W. B. (2005). Risk factors predicting changes in marijuana involvement in teenagers. Archives of General Psychiatry, 62, 311–319. doi: 10.1001/archpsyc.62.3.311.CrossRefPubMedGoogle Scholar
  46. Vigna-Taglianti, F., Vadrucci, S., Faggiano, F., Burkhart, G., Siliquini, R., Galanti, M. R., & EU-Dap Study Group. (2009). Is universal prevention against youths' substance misuse really universal? Gender-specific effects in the EU-Dap school-based prevention trial. Journal of Epidemiology and Community Health, 63, 722–728. doi: 10.1136/jech.2008.081513.CrossRefGoogle Scholar
  47. von Sydow, K., Lieb, R., Pfister, H., Hofler, M., & Wittchen, H. U. (2002). What predicts incident use of cannabis and progression to abuse and dependence? A 4-year prospective examination of risk factors in a community sample of adolescents and young adults. Drug and Alcohol Dependence, 68, 49–64. doi: 10.1016/s0376-8716(02)00102-3.CrossRefGoogle Scholar
  48. Wang, J., Simons-Morton, B. G., Farhart, T., & Luk, J. W. (2009). Socio-demographic variability in adolescent substance use: Mediation by parents and peers. Prevention Science, 10, 387–396. doi: 10.1007/s11121-009-0141-1.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Weiss, J. W., Merrill, V., & Akagha, K. (2011). Substance use and its relationship to family functioning and self-image in adolescents. Journal of Drug Education, 41, 79–97. doi: 10.2190/DE.41.1.e.CrossRefPubMedGoogle Scholar

Copyright information

© Society for Prevention Research 2014

Authors and Affiliations

  • Michal Miovský
    • 1
  • Hana Voňková
    • 1
    • 2
  • Roman Gabrhelík
    • 1
    Email author
  • Lenka Šťastná
    • 1
  1. 1.First Faculty of Medicine, Department of AddictologyCharles University in Prague and General University Hospital in PraguePrague 2Czech Republic
  2. 2.Faculty of Education, Institute for Research and Development of EducationCharles University in PraguePrague 1Czech Republic

Personalised recommendations