Advertisement

Prevention Science

, Volume 13, Issue 5, pp 449–461 | Cite as

Latent Class Analysis of Stages of Change for Multiple Health Behaviors: Results from the Special Diabetes Program for Indians Diabetes Prevention Program

  • Luohua Jiang
  • Janette Beals
  • Lijing Zhang
  • Christina M. Mitchell
  • Spero M. Manson
  • Kelly J. Acton
  • Yvette Roubideaux
  • and the Special Diabetes Program for Indians Demonstration Projects
Article

Abstract

This study sought to identify latent subgroups among American Indian and Alaska Native (AI/AN) patients with pre-diabetes based on their stages of change for multiple health behaviors. We analyzed baseline data from participants of the Special Diabetes Program for Indians Diabetes Prevention (SDPI-DP) Program, a lifestyle intervention program to prevent diabetes among AI/ANs. A total of 3,135 participants completed baseline questionnaires assessing stages of change for multiple health behaviors, specifically exercise, healthy eating, and weight loss. Latent class analysis was used to identify subgroups of people based on their answers to stages of change questions. Covariates were added to the latent class analyses to investigate how class membership was related to sociodemographic, behavioral, and psychosocial factors. Three classes were identified based on the distributions of the stages of change variables: Contemplation, Preparation, and Action/Maintenance classes. Male and retired participants were more likely to be in more advanced stages. Those who exercised more, ate healthier diets, and weighed less were significantly more likely to be in the Action/Maintenance class. Further, the participants who had higher self-efficacy, stronger family support, and better health-related quality of life had higher odds of being in the Action/Maintenance class. In conclusion, we found that stages of change for multiple behaviors can be summarized by a three-class model in this sample. Investigating the relationships between latent classes and intervention outcomes represents important next steps to extend the findings of the current study.

Keywords

Transtheoretical model Exercise Nutrition Weight management American Indian and Alaska natives 

Notes

Acknowledgments

Funding for this project was provided by the Indian Health Service (HHSI242200400049C, S. Manson). We would like to express our gratitude to the Indian Health Service as well as tribal and urban Indian health programs and participants involved in the Special Diabetes Program for Indians Diabetes Prevention Program.

References

  1. Absetz, P., Valve, R., Oldenburg, B., Heinonen, H., Nissinen, A., Fogelholm, M., et al. (2007). Type 2 diabetes prevention in the “Real world” - One-year results of the GOAL implmentation trail. Diabetes Care, 30, 2465–2470. doi: 10.2337/dc07-0171.PubMedCrossRefGoogle Scholar
  2. Ackermann, R. T., Marrero, D. G., Hicks, K. A., Hoerger, T. J., Sorensen, S., Zhang, P., et al. (2006). An evaluation of cost sharing to finance a diet and physical activity intervention to prevent diabetes. Diabetes Care, 29, 1237–1241. doi: 10.2337/dc05-1709.PubMedCrossRefGoogle Scholar
  3. Acton, K. J., Burrows, N. R., Geiss, L. S., & Thompson, T. (2003). Diabetes prevalence among American Indians and Alaska Natives and the overall population–United States, 1994–2002. Morbidity and Mortality Weekly Report, 52, 702–704.Google Scholar
  4. Acton, K. J., Burrows, N. R., Wang, J., & Geiss, L. S. (2006). Diagnosed diabetes among American Indian and Alaska Natives aged <35 years - United States, 1994–2004. Morbidity and Mortality Weekly Report, 55, 1201–1203.Google Scholar
  5. Adams, S. A., Matthews, C. E., Ebbeling, C. B., Moore, C. G., Cunningham, J. E., Fulton, J., et al. (2005). The effect of social desirability and social approval on self-reports of physical activity. American Journal of Epidemiology, 161, 389–398. doi: 10.1093/aje/kwi054.PubMedCrossRefGoogle Scholar
  6. Andres, A., Gomez, J., & Saldana, C. (2007). The transtheoretical model and obesity: A bibliometric study. Scientometrics, 73, 289–301. doi: 10.1007/s11192-007-1692-1.CrossRefGoogle Scholar
  7. Andres, A., Gomez, J., & Saldana, C. (2008). Challenges and applications of the transtheoretical model in patients with diabetes mellitus. Disease Management & Health Outcomes, 16, 31–46.CrossRefGoogle Scholar
  8. Aveyard, P., Lancashire, E., Almond, J., & Cheng, K. K. (2002). Can the stages of change for smoking acquisition be measured reliably in adolescents? Preventive Medicine, 35, 407–414. doi: 10.1006/pmed.2002.1179.PubMedCrossRefGoogle Scholar
  9. BeLue, R., Lanza, S. T., & Figaro, M. K. (2009). Lifestyle therapy changes and hypercholesterolemia: Identifying risk groups in a community sample of Blacks and Whites. Ethnicity & Disease, 19, 142–147.Google Scholar
  10. Brodeur, N., Rondeau, G., Brochu, S., Lindsay, J., & Phelps, J. (2008). Does the transtheoretical model predict attrition in domestic violence treatment programs? Violence and Victims, 23, 493–507.PubMedCrossRefGoogle Scholar
  11. Burn, G. E., Naylor, P. J., & Page, A. (1999). Assessment of stages of change for exercise within a worksite lifestyle screening program. American Journal of Health Promotion, 13, 143–145.PubMedCrossRefGoogle Scholar
  12. CDC. (2011). 2011 National Diabetes Fact Sheet Retrieved from http://www.cdc.gov/diabetes/pibs/estimates11.htm.
  13. Collins, L. M., & Lanza, S. T. (2009). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences. Hoboken, NJ: Wiley.Google Scholar
  14. Evers, K. E., Prochaska, J. O., Johnson, J. L., Mauriello, L. A., Padula, J. A., & Prochaska, J. M. (2006). A randomized clinical trial of a population- and transtheoretical model-based stress-management intervention. Health Psychology, 25, 521–529. doi: 10.1037/0278-6133.25.4.521.PubMedCrossRefGoogle Scholar
  15. Fahrenwald, N. L., & Walker, S. N. (2003). Application of the transtheoretical model of behavior change to the physical activity behavior of WIC mothers. Public Health Nursing, 20, 307–317. doi: 10.1046/j.1525-1446.2003.20408.x.PubMedCrossRefGoogle Scholar
  16. Glanz, K., Patterson, R. E., Kristal, A. R., DiClemente, C. C., Heimendinger, J., Linnan, L., et al. (1994). Stages of change in adopting healthy diets: Fat, fiber, and correlates of nutrient intake. Health Education Quarterly, 21, 499–519.PubMedCrossRefGoogle Scholar
  17. Greene, G. W., & Rossi, S. R. (1998). Stages of change for reducing dietary fat intake over 18 months. Journal of the American Dietetic Association, 98, 529–534. doi: 10.1016/s0002-8223(98)00120-5.PubMedCrossRefGoogle Scholar
  18. Greene, G. W., Rossi, S. R., Reed, G. R., Willey, C., & Prochaska, J. O. (1994). Stages of change for reducing dietary fat to 30% of energy or less. Journal of the American Dietetic Association, 94, 1105–1110. doi: 10.1016/0002-8223(94)91127-4.PubMedCrossRefGoogle Scholar
  19. Greene, G. W., Fey-Yensan, N., Padula, C., Rossi, S., Rossi, J. S., & Clark, P. G. (2004). Differences in psychosocial variables by stage of change for fruits and vegetables in older adults. Journal of the American Dietetic Association, 104, 1236–1243. doi: 10.1016/j.jada.2004.05.205.PubMedCrossRefGoogle Scholar
  20. Guo, B. L., Aveyard, P., Fielding, A., & Sutton, S. (2009). Using latent class and latent transition analysis to examine the transtheoretical model staging algorithm and sequential stage transition in adolescent smoking. Substance Use & Misuse, 44, 2028–2042. doi: 10.3109/10826080902848665.CrossRefGoogle Scholar
  21. Hawkins, D. S., Hornsby, P. P., & Schorling, J. B. (2001). Stages of change and weight loss among rural African American women. Obesity Research, 9, 59–67. doi: 10.1038/oby.2001.8.PubMedCrossRefGoogle Scholar
  22. Helitzer, D. L., Peterson, A. B., Sanders, M., & Thompson, J. (2007). Relationship of stages of change to attendance in a diabetes prevention program. American Journal of Health Promotion, 21, 517–520.PubMedCrossRefGoogle Scholar
  23. Johnson, S. S., Paiva, A. L., Cummins, C. O., Johnson, J. L., Dyment, S. J., Wright, J. A., et al. (2008). Transtheoretical model-based multiple behavior intervention for weight management: Effectiveness on a population basis. Preventive Medicine, 46, 238–246. doi: 10.1016/j.ypmed.2007.09.010.PubMedCrossRefGoogle Scholar
  24. Jones, H., Edwards, L., Vallis, T. M., Ruggiero, L., Rossi, S. R., Rossi, J. S., et al. (2003). Changes in diabetes self-care behaviors make a difference in glycemic control: The Diabetes Stages of Change (DiSC) study. Diabetes Care, 26, 732–737.PubMedCrossRefGoogle Scholar
  25. Kavookjian, J., Berger, B. A., Grimley, D. M., Villaume, W. A., Anderson, H. M., & Barker, K. N. (2005). Patient decision making: Strategies for diabetes diet adherence intervention. Research in Social and Administrative Pharmacy, 1, 389–407. doi: 10.1016/j.sapharm.2005.06.006.PubMedCrossRefGoogle Scholar
  26. Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., et al. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine, 346, 393–403.PubMedCrossRefGoogle Scholar
  27. Krummel, D. A., Semmens, E., Boury, J., Gordon, P. M., & Larkin, K. T. (2004). Stages of change for weight management in postpartum women. Journal of the American Dietetic Association, 104, 1102–1108. doi: 10.1016/j.jada.2004.04.022.PubMedCrossRefGoogle Scholar
  28. Laforge, R. G., Rossi, J. S., Prochaska, J. O., Velicer, W. F., Levesque, D. A., & McHorney, C. A. (1999). Stage of regular exercise and health-related quality of life. Preventive Medicine, 28, 349–360. doi: 10.1006/pmed.1998.0429.PubMedCrossRefGoogle Scholar
  29. Lanza, S. T., Collins, L. M., Lemmon, D. R., & Schafer, J. L. (2007). PROC LCA: A SAS procedure for latent class analysis. Structural Equation Modeling-a Multidisciplinary Journal, 14, 671–694.PubMedCrossRefGoogle Scholar
  30. Lechner, L., & De Vries, H. (1995). Starting participation in an employee fitness program: Attitudes, social influence, and self-efficacy. Preventive Medicine, 24, 627–633. doi: S0091743585710985[pii].PubMedCrossRefGoogle Scholar
  31. Lin, T. H., & Dayton, C. M. (1997). Model selection information criteria for non-nested latent class models. Journal of Educational and Behavioral Statistics, 22, 249–264. doi: 10.3102/10769986022003249.Google Scholar
  32. Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.CrossRefGoogle Scholar
  33. Lorentzen, C., Ommundsen, Y., & Holme, I. (2007). Psychosocial correlates of stages of change in physical activity in an adult community sample. European Journal of Sport Science, 7, 93–106.CrossRefGoogle Scholar
  34. Marcus, B. H., Banspach, S. W., Lefebvre, R. C., Rossi, J. S., Carleton, R. A., & Abrams, D. B. (1992a). Using the stages of change model to increase the adoption of physical activity among community participants. American Journal of Health Promotion, 6, 424–429.CrossRefGoogle Scholar
  35. Marcus, B. H., Selby, V. C., Niaura, R. S., & Rossi, J. S. (1992b). Self-efficacy and the stages of exercise behavior change. Research Quarterly for Exercise and Sport, 63, 60–66.Google Scholar
  36. Marcus, B. H., Bock, B. C., Pinto, B. M., Forsyth, L. H., Roberts, M. B., & Traficante, R. M. (1998). Efficacy of an individualized, motivationally-tailored physical activity intervention. Annals of Behavioral Medicine, 20, 174–180. doi: 10.1007/bf02884958.PubMedCrossRefGoogle Scholar
  37. Marshall, S. J., & Biddle, S. J. H. (2001). The transtheoretical model of behavior change: A meta-analysis of applications to physical activity and exercise. Annals of Behavioral Medicine, 23, 229–246. doi: 10.1207/s15324796abm2304_2.PubMedCrossRefGoogle Scholar
  38. Mauriello, L. M., Ciavatta, M. M. H., Paiva, A. L., Sherman, K. J., Castle, P. H., Johnson, J. L., et al. (2010). Results of a multi-media multiple behavior obesity prevention program for adolescents. Preventive Medicine, 51, 451–456. doi: 10.1016/j.ypmed.2010.08.004.
  39. Migneault, J. P., Adams, T. B., & Read, J. P. (2005). Application of the transtheoretical model to substance abuse: Historical development and future directions. Drug and Alcohol Review, 24, 437–448. doi: 10.1080/09595230500290866.PubMedCrossRefGoogle Scholar
  40. Muthén, L. K., & Muthén, B. O. (1998–2007). Mplus user's guide (5th ed.). Los Angeles: Authors.Google Scholar
  41. Pan, X. R., Li, G. W., Hu, Y. H., Wang, J. X., Yang, W. Y., An, Z. X., et al. (1997). Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 20, 537–544.PubMedCrossRefGoogle Scholar
  42. Plotnikoff, R. C., Brez, S., & Hotz, S. B. (2000). Exercise behavior in a community sample with diabetes: Understanding the determinants of exercise behavioral change. The Diabetes Educator, 26, 450–459.PubMedCrossRefGoogle Scholar
  43. Prochaska, J. O., Diclemente, C. C., Velicer, W. F., & Rossi, J. S. (1993). Standardized, individualized, interactive, and personalized self-help programs for smoking cessation. Health Psychology, 12, 399–405. doi: 10.1037//0278-6133.12.5.399.PubMedCrossRefGoogle Scholar
  44. Prochaska, J. O., Velicer, W. F., Rossi, J. S., Redding, C. A., Greene, G. W., Rossi, S. R., et al. (2004). Multiple risk expert systems interventions: Impact of simultaneous stage-matched expert system interventions for smoking, high-fat diet, and sun exposure in a population of parents. Health Psychology, 23, 503–516. doi: 10.1037/0278-6133.23.5.503.PubMedCrossRefGoogle Scholar
  45. Prochaska, J. O., Velicer, W. F., Redding, C., Rossi, J. S., Goldstein, M., DePue, J., et al. (2005). Stage-based expert systems to guide a population of primary care patients to quit smoking, eat healthier, prevent skin cancer, and receive regular mammograms. Preventive Medicine, 41, 406–416. doi: 10.1016/j.ypmed.2004.09.050.PubMedCrossRefGoogle Scholar
  46. Prochaska, J. O., Butterworth, S., Redding, C. A., Burden, V., Perrin, N., Leo, M., et al. (2008). Initial efficacy of MI, TTM tailoring and HRI’s with multiple behaviors for employee health promotion. Preventive Medicine, 46, 226–231. doi: 10.1016/j.ypmed.2007.11.007.PubMedCrossRefGoogle Scholar
  47. Ruggiero, L., & Prochaska, J. O. (1993). Readiness for change: Application of the transtheoretical model to diabetes. Diabetes Spectrum, 6, 22–60.Google Scholar
  48. Scagliusi, F. B., Polacow, V. O., Artioli, G. G., Benatti, F. B., & Lancha, A. H. (2003). Selective underreporting of energy intake in women: Magnitude, determinants, and effect of training. Journal of the American Dietetic Association, 103, 1306–1313. doi: 10.1016/s0002-8223(03)01074-5.PubMedCrossRefGoogle Scholar
  49. Schafer, L. C., McCaul, K. D., & Glasgow, R. E. (1986). Supportive and nonsupportive family behaviors: Relationships to adherence and metabolic control in persons with type I diabetes. Diabetes Care, 9, 179–185.PubMedCrossRefGoogle Scholar
  50. Smith, M. S., Wallston, K. A., & Smith, C. A. (1995). The development and validation of the Perceived Health Competence Scale. Health Education Research, 10, 51–64. doi: 10.1093/her/10.1.51.PubMedCrossRefGoogle Scholar
  51. Tooze, J. A., Subar, A. F., Thompson, F. E., Troiano, R., Schatzkin, A., & Kipnis, V. (2004). Psychosocial predictors of energy underreporting in a large doubly labeled water study. American Journal of Clinical Nutrition, 79, 795–804.PubMedGoogle Scholar
  52. Topolski, T. D., LoGerfo, J., Patrick, D. L., Williams, B., Walwick, J., & Patrick, M. B. (2006). The Rapid Assessment of Physical Activity (RAPA) among older adults. Preventing Chronic Disease, 3, A118.PubMedGoogle Scholar
  53. Tuomilehto, J., Lindstrom, J., Eriksson, J. G., Valle, T. T., Hamalainen, H., Ilanne-Parikka, P., et al. (2001). Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. The New England Journal of Medicine, 344, 1343–1350. doi: 10.1056/nejm200105033441801.PubMedCrossRefGoogle Scholar
  54. Vallis, M., Ruggiero, L., Greene, G., Jones, H., Zinman, B., Rossi, S., et al. (2003). Stages of change for healthy eating in diabetes: Relation to demographic, eating-related, health care utilization, and psychosocial factors. Diabetes Care, 26, 1468–1474.PubMedCrossRefGoogle Scholar
  55. van der Ven, N. (2003). Psychosocial group interventions in diabetes care. Diabetes Spectrum, 16, 88–95.CrossRefGoogle Scholar
  56. Ware, J. E., Kosinski, M., & Keller, S. D. (1996). A 12-item short-form health survey - Construction of scales and preliminary tests of reliability and validity. Medical Care, 34, 220–233. doi: 10.1097/00005650-199603000-00003.PubMedCrossRefGoogle Scholar

Copyright information

© Society for Prevention Research 2012

Authors and Affiliations

  • Luohua Jiang
    • 1
  • Janette Beals
    • 2
  • Lijing Zhang
    • 2
  • Christina M. Mitchell
    • 2
  • Spero M. Manson
    • 2
  • Kelly J. Acton
    • 3
  • Yvette Roubideaux
    • 4
  • and the Special Diabetes Program for Indians Demonstration Projects
  1. 1.Department of Epidemiology and BiostatisticsTexas A&M Health Science CenterCollege StationUSA
  2. 2.Centers for American Indian and Alaska Native Health, Colorado School of Public HealthUniversity of Colorado DenverAuroraUSA
  3. 3.Office of the Assistant Secretary for HealthUS Department of Health & Human ServicesSan FranciscoUSA
  4. 4.Office of the DirectorIndian Health ServiceRockvilleUSA

Personalised recommendations