Prevention Science

, Volume 12, Issue 1, pp 12–22

Assessing Media Campaigns Linking Marijuana Non-Use with Autonomy and Aspirations: “Be Under Your Own Influence” and ONDCP’s “Above the Influence”

  • Michael D. Slater
  • Kathleen J. Kelly
  • Frank R. Lawrence
  • Linda R. Stanley
  • Maria Leonora G. Comello
Article

Abstract

Two media-based interventions designed to reduce adolescent marijuana use ran concurrently from 2005 to 2009. Both interventions used similar message strategies, emphasizing marijuana’s inconsistency with personal aspirations and autonomy. “Be Under Your Own Influence” was a randomized community and school trial replicating and extending a successful earlier intervention of the same name (Slater et al. Health Education Research 21:157–167, 2006). “Above the Influence” is a continuing national television, radio, and print campaign sponsored by the Office of National Drug Control Policy (ONDCP). This study assessed the simultaneous impact of the interventions in the 20 U.S. communities. Results indicate that earlier effects of the “Be Under Your Own Influence” intervention replicated only in part and that the most plausible explanation of the weaker effects is high exposure to the similar but more extensive ONDCP “Above the Influence” national campaign. Self-reported exposure to the ONDCP campaign predicted reduced marijuana use, and analyses partially support indirect effects of the two campaigns via aspirations and autonomy.

Keywords

Marijuana Media School intervention Community intervention ONDCP 

References

  1. Agresti, A. (2002). Categorical data analysis (2nd ed.). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  2. Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structurals equation modeling: Issues and techniques (pp. 243–277). Mahwah, NJ: Erlbaum.Google Scholar
  3. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.CrossRefGoogle Scholar
  4. Eddy, M. (2006). War on drugs: The National Youth Anti-Drug Media Campaign. Retrieved from http://www.usembassy.it/pdf/other/RS21490.pdf.
  5. Flay, B. R. (2000). Approaches to substance use prevention utilizing school curriculum plus social environment change. Addictive Behaviors, 25, 861–885.CrossRefPubMedGoogle Scholar
  6. Goldstein, H. A. (1990). Multilevel statistical models. New York: Oxford University Press.Google Scholar
  7. Green, L. W. (1977). Evaluation and measurement: Some dilemmas for health education. American Journal of Public Health, 67, 155–161.CrossRefPubMedGoogle Scholar
  8. Hornik, R. C. (1988). Development communication. New York: Longman.Google Scholar
  9. Hornik, R., Jacobsohn, L., Orwin, R., Piesse, A., & Kalton, G. (2008). Effects of the National Youth Anti-drug Media Campaign on youths. American Journal of Public Health, 98, 2229–2236.CrossRefPubMedGoogle Scholar
  10. Johnston, L. D., O’Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2009). Monitoring the Future national survey results on drug use, 1975–2008. Volume I: Secondary school students (NIH Publication No. 09-7402). Bethesda, MD: National Institute on Drug Abuse.Google Scholar
  11. Kelly, K. J., Comello, M. L. G., & Slater, M. D. (2006). Development of an aspirational campaign to prevent youth substance use: “Be Under Your Own Influence.” Social Marketing Quarterly, XII, 14–27.CrossRefGoogle Scholar
  12. Kelly, K. J., Stanley, L. R., & Edwards, R. W. (2000). The impact of a localized anti-alcohol and tobacco media campaign on adolescent females. Social Marketing Quarterly, 1, 39–43.CrossRefGoogle Scholar
  13. Kelly, K. J., Swaim, R. C., & Wayman, J. C. (1996). The impact of a localized antidrug media campaign on targeted variables associated with adolescent drug use. Journal of Public Policy & Marketing, 15, 238–251.Google Scholar
  14. Klein, J. D., Brown, J. D., Childers, K. W., Oliveri, J., Porter, C., & Dykers, C. (1993). Adolescents’ risky behavior and mass media use. Pediatrics, 92, 24–31.PubMedGoogle Scholar
  15. Kleinbaum, D. G., Kupper, L. L., Muller, K. E., & Nizam, A. (1998). Applied regression analysis and other multivariable methods (3rd ed.). London: Duxbury Press.Google Scholar
  16. Kokkinaki, F., & Lunt, P. (1999). The effect of advertising message involvement on brand attitude accessibility. Journal of Economic Psychology, 20, 45–51.CrossRefGoogle Scholar
  17. Krull, J. L., & MacKinnon, D. P. (2001). Multilevel modeling of individual and group level mediated effects. Multivariate Behavioral Research, 36, 249–77.CrossRefGoogle Scholar
  18. Substance Abuse and Mental Health Administration (2010). Table 4.2B. Retrieved from http://www.oas.samhsa.gov/NSDUH/2K8NSDUH/tabs/Sect4peTabs1to16.htm Accessed January 13, 2010.
  19. Office of National Drug Control Policy. (1998). The National Youth Anti-Drug Media Campaign: Communication strategy statement [Brochure]. Washington, DC: Author.Google Scholar
  20. Palmgreen, P., Lorch, E. P., Stephenson, M. T., Hoyle, R. H., & Donohew, L. (2007). Effects of the Office of National Drug Control Policy’s marijuana initiative campaign on high sensation-seeking adolescents. American Journal of Public Health, 97, 1644–1647.CrossRefPubMedGoogle Scholar
  21. Peterson, A. C. (1988). Adolescent development. Annual Review of Psychology, 39, 583–607.CrossRefGoogle Scholar
  22. Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. The American Psychologist, 55, 68–78.CrossRefPubMedGoogle Scholar
  23. Scheier, L. M., & Grenard, J. L. (2010). Influence of a nation-wide social marketing campaign on adolescent drug use. Journal of Health Communication, 15, 240–271.CrossRefPubMedGoogle Scholar
  24. Shapiro, M. A. (1994). Signal detection measures of recognition memory. In A. Lang (Ed.), Measuring psychological responses to the media (pp. 133–148). Mahwah, CA: Erlbaum.Google Scholar
  25. Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. London: Chapman & Hall.CrossRefGoogle Scholar
  26. Slater, M. D. (2007). Reinforcing spirals: The mutual influence of media selectivity and media effects and their impact on individual behavior and social identity. Communication Theory, 17, 281–303.CrossRefGoogle Scholar
  27. Slater, M. D., & Kelly, K. J. (2002). Testing alternative explanations for exposure effects in media campaigns: The case of a community-based, in-school media drug prevention project. Communication Research, 29, 367–389.CrossRefGoogle Scholar
  28. Slater, M., Edwards, R., Plested, B., Thurman, P., Kelly, K., & Comello, M. (2005). Using community readiness key informant assessments in a randomized group trial: Impact of a participatory community media intervention. Journal of Community Health, 30, 39–53.CrossRefPubMedGoogle Scholar
  29. Slater, M. D., Kelly, K. J., Edwards, R. W., Plested, B. A., Thurman, P. J., Keefe, T. J., et al. (2006). Combining in-school social marketing and participatory, community-based media efforts: Reducing marijuana and alcohol uptake among younger adolescents. Health Education Research, 21, 157–167.CrossRefPubMedGoogle Scholar
  30. Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage.Google Scholar
  31. Sobel, M. E. (1982). Asymptotic intervals for indirect effects in structural equation models. In S. Leinhart (Ed.), Sociological methodology (pp. 290–312). San Francisco, NJ: Jossey-Bass.Google Scholar
  32. Southwell, B., Barmada, C., Hornik, R., & Maklan, D. (2002). Can we measure encoded exposure? Validation evidence from a national campaign. Journal of Health Communication, 7, 445–453.CrossRefPubMedGoogle Scholar
  33. Tang, Z., & Orwin, R. G. (2009). Marijuana initiation among American youth and its risks as dynamic processes: Prospective findings from a national longitudinal study. Substance Use & Misuse, 44, 195–211.CrossRefGoogle Scholar
  34. White, T. (2008, May). Innovative analytic approaches to measure the impact of a drug prevention social marketing campaign. Paper presented at the International Communication Association, Health Communication Division, Montreal, Canada.Google Scholar
  35. Wothke, W. (2000). Longitudinal and multi-group modeling with missing data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multiple group data: Practical issues, applied approaches and specific examples (p. 219–240). Mahwah, NJ: Erlbaum.Google Scholar

Copyright information

© Society for Prevention Research 2011

Authors and Affiliations

  • Michael D. Slater
    • 1
  • Kathleen J. Kelly
    • 2
  • Frank R. Lawrence
    • 3
  • Linda R. Stanley
    • 2
  • Maria Leonora G. Comello
    • 4
  1. 1.The Ohio State UniversityColumbusUSA
  2. 2.Colorado State UniversityFort CollinsUSA
  3. 3.The Pennsylvania State UniversityUniversity ParkUSA
  4. 4.University of North CarolinaChapel HillUSA

Personalised recommendations