Prevention Science

, Volume 10, Issue 2, pp 87–99 | Cite as

A General Model for Testing Mediation and Moderation Effects

Article

Abstract

This paper describes methods for testing mediation and moderation effects in a dataset, both together and separately. Investigations of this kind are especially valuable in prevention research to obtain information on the process by which a program achieves its effects and whether the program is effective for subgroups of individuals. A general model that simultaneously estimates mediation and moderation effects is presented, and the utility of combining the effects into a single model is described. Possible effects of interest in the model are explained, as are statistical methods to assess these effects. The methods are further illustrated in a hypothetical prevention program example.

Keywords

Mediation Indirect effect Moderation Mediated moderation Moderated mediation 

References

  1. Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
  2. Aroian, L. A. (1947). The probability function of the product of two normally distributed variables. Annals of Mathematical Statistics, 18, 265–271. doi:10.1214/aoms/1177730442.CrossRefGoogle Scholar
  3. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. doi:10.1037/0022-3514.51.6.1173.PubMedCrossRefGoogle Scholar
  4. Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations. Psychological Methods, 11, 142–163.PubMedCrossRefGoogle Scholar
  5. Beck, C.T. (1994). Achieving statistical power through research design sensitivity. Journal of Advanced Nursing, 20, 912–916.PubMedCrossRefGoogle Scholar
  6. Borich, G. D., & Godbout, R. C. (1974). Extreme groups designs and the evaluation of statistical power. Educational and Psychological Measurement, 34, 663–675.CrossRefGoogle Scholar
  7. Champoux, J. E. & Peters, W. S. (1987). Form, effect size, and power in moderated regression analysis. Journal of Occupational Psychology, 60, 243–255.Google Scholar
  8. Chen, H. T. (1990). Theory driven evaluations. Newbury Park, CA: Sage.Google Scholar
  9. Cohen, J., Cohen, P., West, S. G., & Aiken, L. A. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  10. Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field settings. Chicago: Rand McNally.Google Scholar
  11. Dearing, E., & Hamilton, L. C. (2006). Contemporary advances and classic advice for analyzing mediating and moderating variables. Monographs of the Society for Research in Child Development, (December), 71, 88–104.Google Scholar
  12. Donaldson, S. I. (2001). Mediator and moderator analysis in program development. In S. Sussman (Ed.), Handbook of program development for health and behavior research and practice (pp. 470–496). Thousand Oaks, CA: Sage.Google Scholar
  13. Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12, 1–22. doi:10.1037/1082-989X.12.1.1.PubMedCrossRefGoogle Scholar
  14. Evans, M. G. (1985). A Monte Carlo study of the effects of correlated method variance in moderated multiple regression analysis. Organizational Behavior and Human Decisions Processes, 36, 305–323.CrossRefGoogle Scholar
  15. Fairchild, A. J. (2008). A comparison of frameworks for the joint analysis of mediation and moderation effects. Unpublished doctoral dissertation. Arizona State University, Tempe.Google Scholar
  16. Frazier, P. A., Tix, A. P., & Barron, K. E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of Counseling Psychology, 51, 115–134. doi:10.1037/0022-0167.51.1.115.CrossRefGoogle Scholar
  17. Gogineni, A., Alsup, R., & Gillespie, D. (1995). Mediation and moderation in social work research. Social Work Research, 19, 57–63.PubMedGoogle Scholar
  18. Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equations models. Sociological Methodology, 18, 449–484. doi:10.2307/271055.CrossRefGoogle Scholar
  19. Hoyle, R. H., & Robinson, J. C. (2003). Mediated and moderated effects in social psychological research: Measurement, design, and analysis issues. In C. Sansone, C. Morf, & A. T. Panter (Eds.), Handbook of methods in social psychology (pp. 213–233). Thousand Oaks, CA: Sage.Google Scholar
  20. James, L. R., & Brett, J. M. (1984). Mediators, moderators, and tests for mediation. The Journal of Applied Psychology, 69, 307–321. doi:10.1037/0021-9010.69.2.307.CrossRefGoogle Scholar
  21. Judd, C. M., & Kenny, D. A. (1981a). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 5, 602–619. doi:10.1177/0193841X8100500502.CrossRefGoogle Scholar
  22. Judd, C. M., & Kenny, D. A. (1981b). Estimating the effects of social intervention. Cambridge, England: Cambridge University Press.Google Scholar
  23. Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level mediation in multilevel models. Psychological Methods, 8, 115–128.PubMedCrossRefGoogle Scholar
  24. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Earlbaum.Google Scholar
  25. MacKinnon, D. P., & Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17, 144–158. doi:10.1177/0193841X9301700202.CrossRefGoogle Scholar
  26. MacKinnon, D. P., Fritz, M. S., Williams, J., & Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39, 384–389.PubMedGoogle Scholar
  27. MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science, 1, 173–181. doi:10.1023/A:1026595011371.PubMedCrossRefGoogle Scholar
  28. MacKinnon, D. P., & Lockwood, C. M. (2001). Distribution of product tests for the mediated effect: Power and Type I error rates. Unpublished manuscript.Google Scholar
  29. MacKinnon, D. P., Lockwood, C. M., & Hoffman, J. M. (1998, June). A new method to test for mediation. Paper presented at the annual meeting of the Society for Prevention Research, Park City, UT.Google Scholar
  30. MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test the significance of mediation and other intervening variable effects. Psychological Methods, 7, 83–104. doi:10.1037/1082-989X.7.1.83.PubMedCrossRefGoogle Scholar
  31. MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99–128. doi:10.1207/s15327906mbr3901_4.CrossRefGoogle Scholar
  32. McClelland, G. H. & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114, 376–390.PubMedCrossRefGoogle Scholar
  33. Morgan-Lopez, A. A., & MacKinnon, D. P. (2006). Demonstration and evaluation of a method for assessing mediated moderation. Behavior Research Methods, 38, 77–87.PubMedGoogle Scholar
  34. Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation is mediated and mediation is moderated. Journal of Personality and Social Psychology, 89, 852–863. doi:10.1037/0022-3514.89.6.852.PubMedCrossRefGoogle Scholar
  35. Preacher, K. J., Rucker, D. D., & Hayes, R. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185–227.Google Scholar
  36. Rose, B. M., Holmbeck, G. N., Coakley, R. M., & Franks, E. A. (2004). Mediator and moderator effects in developmental and behavioral pediatric research. Journal of Developmental and Behavioral Pediatrics, 25, 58–67. doi:10.1097/00004703-200402000-00013.PubMedCrossRefGoogle Scholar
  37. Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290–312. doi:10.2307/270723.CrossRefGoogle Scholar
  38. Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. Sociological Methodology, 16, 159–186. doi:10.2307/270922.CrossRefGoogle Scholar
  39. Tein, J., Sandler, I. N., MacKinnon, D. P., & Wolchik, S. A. (2004). How did it work? Who did it work for? Mediation in the context of a moderated prevention effect for children of divorce. Journal of Consulting and Clinical Psychology, 72, 617–624. doi:10.1037/0022-006X.72.4.617.PubMedCrossRefGoogle Scholar
  40. Wegener, D. T., & Fabrigar, L. R. (2000). Analysis and design for nonexperimental data addressing causal and noncausal hypotheses. In H. T. Reis & C. M. Judd (Eds.), Handbook of research methods in social and personality psychology (pp. 412–450). New York: Cambridge University Press.Google Scholar
  41. West, S. G., & Aiken, L. S. (1997). Toward understanding individual effects in multiple component prevention programs: Design and analysis strategies. In K. Bryant, M. Windle, & S. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 167–209). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  42. Yzerbyt, V. Y., Muller, D., & Judd, C. M. (2004). Adjusting researchers’ approach to adjustment: On the use of covariates when testing interactions. Journal of Experimental Social Psychology, 40, 424–431. doi:10.1016/j.jesp.2003.10.001.CrossRefGoogle Scholar

Copyright information

© Society for Prevention Research 2008

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of South Carolina, Barnwell CollegeColumbiaUSA
  2. 2.Research in Prevention Lab, Department of PsychologyArizona State UniversityTempeUSA

Personalised recommendations