Structural basis underlying the electron transfer features of a blue copper protein auracyanin from the photosynthetic bacterium Roseiflexus castenholzii

  • Chao Wang
  • Yueyong Xin
  • Zhenzhen Min
  • Junjie Qi
  • Chenyun Zhang
  • Xiaoling XuEmail author
Original article


Auracyanin (Ac) is a blue copper protein that mediates the electron transfer between Alternative Complex III (ACIII) and downstream electron acceptors in both fort chains of filamentous anoxygenic phototrophs. Here, we extracted and purified the air-oxidized RfxAc from the photoheterotrophically grown Roseiflexus castenholzii, and we illustrated the structural basis underlying its electron transferring features. Spectroscopic and enzymatic analyses demonstrated the reduction of air-oxidized RfxAc by the ACIII upon oxidation of menaquinol-4 and menaquinol-7. Crystal structures of the air-oxidized and Na-dithionite-reduced RfxAc at 2.2 and 2.0 Å resolutions, respectively, showed that the copper ions are coordinated by His77, His146, Cys141, and Met151 in minor different geometries. The Cu1–Sδ bond length increase of Met151, and the electron density Fourier differences at Cu1 and His77 demonstrated their essential roles in the dithionite-induced reduction. Structural comparisons further revealed that the RfxAc contains a Chloroflexus aurantiacus Ac-A-like copper binding pocket and a hydrophobic patch surrounding the exposed edge of His146 imidazole, as well as an Ac-B-like Ser- and Thr-rich polar patch located at a different site on the surface. These spectroscopic and structural features allow RfxAc to mediate electron transfers between the ACIII and redox partners different from those of Ac-A and Ac-B. These results provide a structural basis for further investigating the electron transfer and energy transformation mechanism of bacterial photosynthesis, and the diversity and evolution of electron transport chains.


Auracyanin Alternative complex III Roseiflexus castenholzii Crystal structure Electron transfer 



Filamentous anoxygenic phototrophs


Light harvesting


Reaction center


Alternative Complex III


Roseiflexus castenholzii




Solvent accessible surface



We thank Professor Fei Sun at the Institute of Biophysics, Chinese Academy of Sciences for assisting in calculation of the Fourier difference map. We thank Jun Li at Shanghai Tech University for assistance in the data processing of the air-oxidized RfxAc. We thank the staff of the beamline BL19U at Shanghai Synchrotron Radiation Facility for assistance during data collection. This work was supported by the National Natural Science Foundation of China (Grant Numbers 31570738, 31870740 and 31400630).

Author contributions

CW and YYX performed purification, crystallization, and structure determination; CYZ performed the spectroscopic analyses; ZZM performed the enzymatic assays; JJQ assisted in bacterial culturing and protein extraction; XLX designed the experiments and wrote the manuscript. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

11120_2020_709_MOESM1_ESM.docx (3.8 mb)
Supplementary file1 (DOCX 3851 kb)


  1. Adams PD et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr Sect D 66:213–221. CrossRefGoogle Scholar
  2. Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bond CS et al (2001) Crystal structure of auracyanin, a "blue" copper protein from the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus. J Mol Biol 306:47–67. CrossRefPubMedGoogle Scholar
  4. Bowman SE, Bridwell-Rabb J, Drennan CL (2016) Metalloprotein crystallography: more than a structure. Acc Chem Res 49:695–702. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cao L, Bryant DA, Schepmoes AA, Vogl K, Smith RD, Lipton MS, Callister SJ (2012) Comparison of Chloroflexus aurantiacus strain J-10-fl proteomes of cells grown chemoheterotrophically and photoheterotrophically. Photosynth Res 110:153–168. CrossRefPubMedGoogle Scholar
  6. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr Sect D 50:760–763. CrossRefGoogle Scholar
  7. Collins AM, Qian P, Tang Q, Bocian DF, Hunter CN, Blankenship RE (2010) Light-harvesting antenna system from the phototrophic bacterium Roseiflexus castenholzii. Biochemistry 49:7524–7531. CrossRefPubMedGoogle Scholar
  8. Collins AM, Kirmaier C, Holten D, Blankenship RE (2011) Kinetics and energetics of electron transfer in reaction centers of the photosynthetic bacterium Roseiflexus castenholzii. Biochim Biophys Acta 1807:262–269. CrossRefPubMedGoogle Scholar
  9. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 60:2126–2132. CrossRefGoogle Scholar
  10. Gao X, Xin Y, Blankenship RE (2009) Enzymatic activity of the Alternative Complex III as a menaquinol:auracyanin oxidoreductase in the electron transfer chain of Chloroflexus aurantiacus. FEBS Lett 583:3275–3279. CrossRefPubMedGoogle Scholar
  11. Gao X, Majumder EW, Kang Y, Yue H, Blankenship RE (2013) Functional analysis and expression of the mono-heme containing cytochrome c subunit of Alternative Complex III in Chloroflexus aurantiacus. Arch Biochem Biophys 535:197–204. CrossRefPubMedGoogle Scholar
  12. Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193CrossRefGoogle Scholar
  13. Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Ann Rev Plant Biol 62:515–548. CrossRefGoogle Scholar
  14. Hough MA, Antonyuk SV, Strange RW, Eady RR, Hasnain SS (2008) Crystallography with online optical and X-ray absorption spectroscopies demonstrates an ordered mechanism in copper nitrite reductase. J Mol Biol 378:353–361. CrossRefPubMedGoogle Scholar
  15. Kachalova GS, Shosheva AC, Bourenkov GP, Donchev AA, Dimitrov MI, Bartunik HD (2012) Structural comparison of the poplar plastocyanin isoforms PCa and PCb sheds new light on the role of the copper site geometry in interactions with redox partners in oxygenic photosynthesis. J Inorg Biochem 115:174–181. CrossRefPubMedGoogle Scholar
  16. King JD, McIntosh CL, Halsey CM, Lada BM, Niedzwiedzki DM, Cooley JW, Blankenship RE (2013) Metalloproteins diversified: the auracyanins are a family of cupredoxins that stretch the spectral and redox limits of blue copper proteins. Biochemistry 52:8267–8275. CrossRefPubMedGoogle Scholar
  17. Lee M, Maher MJ, Freeman HC, Guss JMJACDBC (2003) Auracyanin B structure in space group P65. Acta Crystallogr Sect D 59:1545–1550. CrossRefGoogle Scholar
  18. Lee M, del Rosario MC, Harris HH, Blankenship RE, Guss JM, Freeman HC (2009) The crystal structure of auracyanin A at 1.85 A resolution: the structures and functions of auracyanins A and B, two almost identical "blue" copper proteins, in the photosynthetic bacterium Chloroflexus aurantiacus. J Biol Inorg Chem 14:329–345. CrossRefPubMedGoogle Scholar
  19. Majumder EL, King JD, Blankenship RE (2013) Alternative Complex III from phototrophic bacteria and its electron acceptor auracyanin. Biochim Biophys Acta 1827:1383–1391. CrossRefPubMedGoogle Scholar
  20. Majumder EL, Olsen JD, Qian P, Collins AM, Hunter CN, Blankenship RE (2016) Supramolecular organization of photosynthetic complexes in membranes of Roseiflexus castenholzii. Photosynth Res 127:117–130. CrossRefPubMedGoogle Scholar
  21. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497CrossRefGoogle Scholar
  22. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. CrossRefPubMedPubMedCentralGoogle Scholar
  23. McManus JD et al (1992) Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus. J Biol Chem 267:6531–6540. CrossRefPubMedGoogle Scholar
  24. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr Sect D 62:859–866. CrossRefGoogle Scholar
  25. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D 53:240–255. CrossRefGoogle Scholar
  26. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Systematic Appl Microbiol 9:47–53CrossRefGoogle Scholar
  27. Pereira MM, Refojo PN, Hreggvidsson GO, Hjorleifsdottir S, Teixeira M (2007) The alternative complex III from Rhodothermus marinus: a prototype of a new family of quinol: electron acceptor oxidoreductases. FEBS Lett 581:4831–4835. CrossRefPubMedGoogle Scholar
  28. Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24CrossRefGoogle Scholar
  29. Refojo PN, Sousa FL, Teixeira M, Pereira MM (2010) The Alternative Complex III: a different architecture using known building modules. Biochim Biophys Acta 1797:1869–1876. CrossRefPubMedGoogle Scholar
  30. Refojo PN, Teixeira M, Pereira MM (2012) The Alternative Complex III: properties and possible mechanisms for electron transfer and energy conservation. Biochim Biophys Acta 1817:1852–1859. CrossRefPubMedGoogle Scholar
  31. Rooney MB, Honeychurch MJ, Selvaraj FM, Blankenship RE, Bond AM, Freeman HC (2003) A thin-film electrochemical study of the "blue" copper proteins, auracyanin A and auracyanin B, from the photosynthetic bacterium Chloroflexus aurantiacus: the reduction potential as a function of pH. J Biol Inorg Chem 8:306–317. CrossRefPubMedGoogle Scholar
  32. Shiozawa JA, Lottspeich F, Feick R (1987) The photochemical reaction center of Chloroflexus aurantiacus is composed of two structurally similar polypeptides. Eur J Biochem 167:595–600CrossRefGoogle Scholar
  33. Solomon EI (2006) Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites. Inorg Chem 45:8012–8025. CrossRefPubMedGoogle Scholar
  34. Tang KH et al (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Trost JT, Mcmanus JD, Freeman JC, Ramakrishna BL, Blankenship REJB (1988) Auracyanin, a blue copper protein from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochemistry 27:7858–7863. CrossRefGoogle Scholar
  36. Tsukatani Y et al (2009) Characterization of a blue-copper protein, auracyanin, of the filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. Arch Biochem Biophys 490:57–62. CrossRefPubMedGoogle Scholar
  37. van de Kamp M, Silvestrini MC, Brunori M, Van Beeumen J, Hali FC, Canters GW (1990) Involvement of the hydrophobic patch of azurin in the electron-transfer reactions with cytochrome C551 and nitrite reductase. Eur J Biochem 194:109–118. CrossRefPubMedGoogle Scholar
  38. Van Driessche G, Hu W, Van de Werken G, Selvaraj F, McManus JD, Blankenship RE, Van Beeumen JJ (1999) Auracyanin A from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus represents an unusual class of small blue copper proteins. Protein Sci 8:947–957. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Xin Y et al (2018) Cryo-EM structure of the RC-LH core complex from an early branching photosynthetic prokaryote. Nat Commun 9:1568. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yamada M, Zhang H, Hanada S, Nagashima KV, Shimada K, Matsuura K (2005) Structural and spectroscopic properties of a reaction center complex from the chlorosome-lacking filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. J Bacteriol 187:1702–1709. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yanyushin MF, del Rosario MC, Brune DC, Blankenship RE (2005) New class of bacterial membrane oxidoreductases. Biochemistry 44:10037–10045. CrossRefPubMedGoogle Scholar
  42. Zhu Z, Cunane LM, Chen Z, Durley RC, Mathews FS, Davidson VL (1998) Molecular basis for interprotein complex-dependent effects on the redox properties of amicyanin. Biochemistry 37:17128–17136. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Institute of Ageing Research, School of MedicineHangzhou Normal UniversityHangzhouChina
  2. 2.College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
  3. 3.Institute of Cardiovascular Disease ResearchThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
  4. 4.Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceHangzhou Normal University School of MedicineHangzhouChina
  5. 5.Photosynthesis Research Center, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina

Personalised recommendations