Advertisement

24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants

  • 33 Accesses

Abstract

Brassinosteroids are promising agents for alleviating the negative effects of salinity on plants, but the mechanism of their protective action is far from being understood. We investigated the effect of pretreatment with 24-epibrassinolide (24-EBL) on the photosynthetic and physiological parameters of potato plants under progressive salinity stress caused by root application of 100 mM NaCl. Salinity clearly inhibited primary photosynthetic processes in potato plants by reducing the contents of photosynthetic pigments, photosynthetic electron transport and photosystem II (PSII) maximal and effective quantum yields. These negative effects of salinity on primary photosynthetic processes were mainly due to toxic ionic effects on the plant’s ability to oxidize the plastoquinone pool. Pretreatment with 24-EBL alleviated this stress effect and allowed the maintenance of plastoquinone pool oxidation and the efficiency of photosystem II photochemistry to be at the same levels as those in unstressed plants; however, the pretreatment did not affect the photosynthetic pigment content. 24-EBL pretreatment clearly alleviated the decrease in leaf osmotic potential under salinity stress. The stress-induced increases in lipid peroxidation and proline contents were not changed under brassinosteroid pretreatment. However, 24-EBL pretreatment increased the peroxidase activity and improved the K+/Na+ ratio in potato leaves, which were likely responsible for the protective 24-EBL action under salt stress.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372. https://doi.org/10.1023/A:1022043000516

  2. Ali Q, Athar HUR, Ashraf M (2008) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul 56:107–116. https://doi.org/10.1007/s10725-008-9290-7

  3. Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98:529–539. https://doi.org/10.1007/s11120-008-9334-x

  4. Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801. https://doi.org/10.1007/s004250100556

  5. Beauchamp Ch, Fridovich I (1971) Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8

  6. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. https://doi.org/10.1016/S0076-6879(78)52032-6

  7. Chen TW, Kahlen K, Stützel H (2015) Disentangling the contributions of osmotic and ionic effects of salinity on stomatal, mesophyll, biochemical and light limitations to photosynthesis. Plant Cell Environ 38:1528–1542. https://doi.org/10.1111/pce.12504

  8. Efimova MV, Manuylova AV, Malofiy MK, Kartashov AV, Kuznetsov VV (2013) Influence of brassinosteroids on forming protective reactions in rape seedlings under salinity. Tomsk State Univ J Biol 21:118–128. https://doi.org/10.17223/19988591/21/9

  9. Efimova MV, Kolomeichuk LV, Boyko EV, Malofii MK, Vidershpan AN, Plyusnin IN, Golovatskaya IF, Murgan OK, Kuznetsov VV (2018a) Physiological mechanisms of Solanum tuberosum L. plants tolerance to chloride salinity. Russian J Plant Physiol 65:394–403. https://doi.org/10.1134/S1021443718030020

  10. Efimova MV, Khripach VA, Boiko EV, Malofii MK, Kolomeichuk LV, Murgan OK, Vidershpun AN, Mukhamatdinova EA, Kuznetsov VV (2018b) The priming of potato plants induced by brassinosteroids reduces oxidative stress and increases salt tolerance. Dokl Biol Sci 478:33–36. https://doi.org/10.1134/S0012496618010106

  11. Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143. https://doi.org/10.1111/j.1399-3054.2011.01450.x

  12. Esen A (1978) A simple method for quantitative, semiquantitative, and qualitive assay of protein. Anal Biochem 89:264–327. https://doi.org/10.1134/S1021443708050087

  13. Gao S, Zheng Z, Gu W, Xie X, Huan L, Pan G, Wang G (2014) Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta). Physiol Plant 152:380–388. https://doi.org/10.1111/ppl.12188

  14. Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, Mojski J, Kociel H, Allakhverdiev SI (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol 63:869–893. https://doi.org/10.1134/S1021443716050058

  15. Hanikenne M, Bernal M, Urzica EI (2014) Ion homeostasis in the chloroplast. Plastid Biol 5:465–514

  16. Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiate. Environ Exp Bot 69:105–112. https://doi.org/10.1016/j.envexpbot.2010.03.004

  17. Hossain MS, Dietz KJ (2016) Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Front Plant Sci 7:548. https://doi.org/10.3389/fpls.2016.00548

  18. Hu Y, Xia S, Su Y, Wang H, Luo W, Su S, Xiao L (2016) Brassinolide increases potato root growth in vitro in a dose-dependent way and alleviates salinity stress. BioMed Res Int. https://doi.org/10.1155/2016/8231873

  19. Jaarsma R, Vries RSM, Boer AH (2013) Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS ONE 8:e60183. https://doi.org/10.1371/journal.pone.0060183

  20. Jajoo A (2013) Changes in photosystem II in response to salt stress. In: Ahmad P (eds) Ecophysiology and responses of plants under salt stress. Springer, Berlin, pp 149–168. https://doi.org/10.1007/978-1-4614-4747-4_5

  21. Jia T, Ito H, Tanaka A (2016) Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. Planta 244:1041–1053. https://doi.org/10.1007/s00425-016-2568-5

  22. Jiang YP, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Chen Z, Yu JQ (2012) Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. New Phytol 194:932–943. https://doi.org/10.1111/j.1469-8137.2012.04111.x

  23. Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V (2014) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25. https://doi.org/10.1016/j.plaphy.2014.03.029

  24. Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

  25. Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov VV (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59:141–154. https://doi.org/10.1134/S1021443712020057

  26. Kreslavski VD, Lankin AV, Vasilyeva GK, Lyubimov VYU, Semenova GN, Schmitt FJ, Friedrich T, Allakhverdiev SI (2014) Effects of polyaromatic hydrocarbons on photosystem II activity in pea leaves. Plant Physiol Biochem 81:559–566. https://doi.org/10.1016/j.plaphy.2014.02.020

  27. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. https://doi.org/10.1016/0076-6879(87)48036-1

  28. Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A, Kopka J, Bouchereau A (2010) Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J 64:215–229. https://doi.org/10.1111/j.1365-313X.2010.04323.x

  29. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

  30. Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? N Phytol 208:668–673. https://doi.org/10.1111/nph.13519

  31. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

  32. Penella C, Landi M, Guidi L, Nebauer SG, Pellegrini E, Bautista AS, Remorini RD, Nali C, López-Galarza S, Calatayud A (2016) Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. J Plant Physiol 193:1–11. https://doi.org/10.1016/j.jplph.2016.02.007

  33. Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903–1916. https://doi.org/10.1104/pp.15.01935

  34. Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. Ion Channels Plant Stress Responses. https://doi.org/10.1007/978-3-642-10494-7_5

  35. Shahbaz M, Ashraf M, Athar HUR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55:51–64. https://doi.org/10.1007/s10725-008-9262-y

  36. Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64. https://doi.org/10.1111/j.1399-3054.2010.01437.x

  37. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. https://doi.org/10.1016/j.tplants.2009.11.009

  38. Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459. https://doi.org/10.1093/jxb/erq251

  39. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203. https://doi.org/10.1093/jxb/erq422

  40. Tikhonov AN (2013) pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534. https://doi.org/10.1007/s11120-013-9845-y

  41. Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:1–16. https://doi.org/10.3389/fenvs.2014.00067

  42. Voitsekhovskaja OV, Tyutereva EV (2015) Chlorophyll b in angiosperms: functions in photosynthesis, signaling and ontogenetic regulation. J Plant Physiol 189:51–64. https://doi.org/10.1016/j.jplph.2015.09.013

  43. Yue J, Fu Z, Zhang L, Zhang Z, Zhang J (2019) The positive effect of different 24-epiBL pretreatments on salinity tolerance in Robinia pseudoacacia L. seedlings. Forest 10:4. Doi:10.3390/f10010004

  44. Zhang L, Xing D (2008) Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts. Photochem Photobiol Sci 7:352–360. https://doi.org/10.1039/b714209a

  45. Zhu T, Deng XG, Tan WR, Zhou X, Luo SS, Han XY, Zhang DW, Lin HH (2015) Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings response to salt stress. Physiol Plant 156:150–163. https://doi.org/10.1111/ppl.12392

  46. Zhu T, Deng X, Zhou X, Zhu L, Zou L, Li P, Zhang D, Lin H (2016) Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci Rep 6:35392. https://doi.org/10.1038/srep35392

  47. Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38. https://doi.org/10.1111/plb.12884

Download references

Acknowledgements

The analyses of plant growth parameters, water status and photosynthetic parameters were supported by the Russian Foundation for Basic Research (Project No. 19-34-50045 mol_nr), the analyses of gene expression and elemental composition were supported by the Russian Science Foundation (Project No. 16-16-04057); assessment of physiological parameters was supported by The Tomsk State University competitiveness improvement programme.

Author information

Correspondence to Ilya E. Zlobin or Suleyman I. Allakhverdiev.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 171 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kolomeichuk, L.V., Efimova, M.V., Zlobin, I.E. et al. 24-Epibrassinolide alleviates the toxic effects of NaCl on photosynthetic processes in potato plants. Photosynth Res (2020). https://doi.org/10.1007/s11120-020-00708-z

Download citation

Keywords

  • Solanum tuberosum L.
  • Salinity stress
  • Photosystem II
  • Osmotic potential
  • Mineral element contents