Advertisement

Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function

  • Wilena Telman
  • Michael Liebthal
  • Karl-Josef DietzEmail author
Original Article
  • 60 Downloads

Abstract

The chloroplast contains three types of peroxiredoxins (PRXs). Recently, 2-CysPRX was associated with thioredoxin (TRX) oxidation-dependent redox regulation. Here, this analysis was expanded to include PRXQ and PRXIIE. Oxidized PRXQ was able to inactivate NADPH malate dehydrogenase and fructose-1,6-bisphosphatase most efficiently in the presence of TRX-m1 and TRX-m4. The inactivation ability of TRXs did not entirely match their reductive activation efficiency. PRXIIE was unable to function as TRX oxidase in enzyme regulation. This conclusion was further supported by the observation that PRXQ adopts the oxidized form by about 50% in leaves, supporting a possible function as a TRX oxidase similar to 2-CysPRX. Results on the oxidation state of photosystem I (P700), plastocyanin, and ferredoxin in intact leaves indicate that each type of PRX has distinct regulatory functions, and that both 2-CysPRX and PRXQ conditionally assist in adjusting the redox state of target proteins for proper activity.

Keywords

A. thaliana Calvin–Benson cycle Malate valve Peroxiredoxins Redox regulation Thioredoxins 

Notes

Acknowledgements

This work was supported by the DFG (DI346/17, SPP1710). We are grateful to Anna Dreyer for providing the PRXIIE expression system, Corinna Wesemann for the A. thaliana pad2 plant material, and Martina Holt for technical assistance.

Authors contributions

WT performed biochemical and enzymatic assays, ML growth experiments in fluctuating light, and analyses of photosynthetic parameters. K-JD designed and directed the project. All authors wrote, read, and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11120_2019_691_MOESM1_ESM.pdf (665 kb)
Supplementary material 1 (PDF 664 kb)

References

  1. Arvidson PO, Sundby C (1999) A model for the chloroplast topology. Aust J Plant Physiol 26:687–694.  https://doi.org/10.1071/PP99072 CrossRefGoogle Scholar
  2. Awad J, Stotz HU, Fekete A, Krischke M, Engert C, Havaux M, Berger S, Mueller MJ (2015) 2-cysteine peroxiredoxins and thylakoid ascorbate peroxidase create a water-water cycle that is essential to protect the photosynthetic apparatus under high light stress conditions. Plant Physiol 167:1592–1603.  https://doi.org/10.1104/pp.114.255356 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balmer Y, Koller A, Val GD, Schürmann P, Buchanan BB (2004) Proteomics uncovers proteins interacting electrostatically with thioredoxin in chloroplasts. Photosynth Res 79:275–280.  https://doi.org/10.1023/B:PRES.0000017207.88257.d4 CrossRefPubMedGoogle Scholar
  4. Barranco-Medina S, Krell T, Sevilla F, Lázaro JJ, Dietz KJ (2008) Conformational and functional switch of mitochondrial peroxiredoxin PrxIIF between hexameric state and an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. J Exp Bot 59:3259–3269.  https://doi.org/10.1093/jxb/ern177 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220.  https://doi.org/10.1146/annurev.arplant.56.032604.144246 CrossRefPubMedGoogle Scholar
  6. Chibani K, Couturier J, Selles B, Jacquot J-P, Rouhier N (2010) The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment. Photosyn Res 104:75–99.  https://doi.org/10.1007/s11120-009-9501-8 CrossRefPubMedGoogle Scholar
  7. Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin J-M, Knaff DB, Miginiac-Maslow M (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 278:23747–23752.  https://doi.org/10.1074/jbc.M302077200 CrossRefPubMedGoogle Scholar
  8. Dietz K-J (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15:1129–1159.  https://doi.org/10.1089/ars.2010.3657 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dietz K-J (2016) Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25.  https://doi.org/10.14348/molcells.2016.2324 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gama F, Bréhélin C, Gelhaye E, Meyer Y, Jacquot J-P, Rey P, Rouhier N (2008) Functional analysis and expression characteristics of chloroplastic PRX IIE. Physiol Plant 133:599–610.  https://doi.org/10.1111/j.1399-3054.2008.01097.x CrossRefPubMedGoogle Scholar
  11. Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjärvi S, Aro E-M, Oelze M-L, Dietz K-J, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R (2012) Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. J Exp Bot 63:1445–1459.  https://doi.org/10.1093/jxb/err386 CrossRefPubMedGoogle Scholar
  12. Horling F, Lamkemeyer P, König J, Finkemeier I, Baier M, Kandlbinder A, Dietz KJ (2003) Divergent light-, ascorbate- and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis thaliana. Plant Physiol 131:317–325.  https://doi.org/10.1104/pp.010017 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Klughammer C, Schreiber U (2016) Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynth Res 128:195–214.  https://doi.org/10.1007/s11120-016-0219-0 CrossRefPubMedPubMedCentralGoogle Scholar
  14. König J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz KJ (2003) Reaction mechanism of the 2-Cys peroxiredoxin: role of the C-terminus and the quarternary structure. J Biol Chem 278:24409–24420.  https://doi.org/10.1074/jbc.M301145200 CrossRefPubMedGoogle Scholar
  15. Kress E, Jahns P (2017) The dynamics of energy dissipation and xanthophyll conversion in Arabidopsis indicate an indirect photoprotective role of zeaxanthin in slowly inducible and relaxing components of non-photochemical quenching of excitation energy. Front Plant Sci 8:2094.  https://doi.org/10.3389/fpls.2017.02094 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz KJ (2018) Interference between arsenic-induced toxicity and hypoxia in Arabidopsis thaliana. Plant Cell Environ 42:574–590.  https://doi.org/10.1111/pce.13441 CrossRefPubMedGoogle Scholar
  17. Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schöttler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz K-J (2006) Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 45:968–981.  https://doi.org/10.1111/j.1365-313X.2006.02665.x CrossRefPubMedGoogle Scholar
  18. Laxa M, Liebthal M, Telman W, Chibani K, Dietz K-J (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants (Basel).  https://doi.org/10.3390/antiox8040094 CrossRefGoogle Scholar
  19. Liebthal M, Maynard D, Dietz K-J (2018) Peroxiredoxins and redox signaling in plants. Antioxid Redox Signal 28:609–624.  https://doi.org/10.1089/ars.2017.7164 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Meyer Y, Miginiac-Maslow M, Schürmann P, Jacquot J-P (2018) Protein-protein interactions in plant thioredoxin dependent systems. In: Roberts JA (ed) Annual plant reviews online. Wiley, ChichesterGoogle Scholar
  21. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462.  https://doi.org/10.1146/annurev-arplant-042809-112116 CrossRefPubMedGoogle Scholar
  22. Motohashi K, Hisabori T (2006) HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 281:35039–35047.  https://doi.org/10.1074/jbc.M605938200 CrossRefPubMedGoogle Scholar
  23. Müller SM, Wang S, Telman W, Liebthal M, Schnitzer H, Viehhauser A, Sticht C, Delatorre C, Wirtz M, Hell R, Dietz K-J (2017) The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response. Plant J 91:995–1014.  https://doi.org/10.1111/tpj.13622 CrossRefPubMedGoogle Scholar
  24. Nikkanen L, Toivola J, Diaz MG, Rintamäki E (2017) Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos Trans R Soc Lond B.  https://doi.org/10.1098/rstb.2016.0474 CrossRefGoogle Scholar
  25. Noctor G, Reichheld J-P, Foyer CH (2018) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol 80:3–12.  https://doi.org/10.1016/j.semcdb.2017.07.013 CrossRefPubMedGoogle Scholar
  26. Ojeda V, Pérez-Ruiz JM, Cejudo FJ (2018) 2-Cys peroxiredoxins participate in the oxidation of chloroplast enzymes in the dark. Mol Plant 11:1377–1388.  https://doi.org/10.1016/j.molp.2018.09.005 CrossRefPubMedGoogle Scholar
  27. Petersson UA, Kieselbach T, García-Cerdán JG, Schröder WP (2006) The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Lett 580(26):6055–6061.  https://doi.org/10.1016/j.febslet.2006.10.001 CrossRefPubMedGoogle Scholar
  28. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975(3):384–394.  https://doi.org/10.1016/S0005-2728(89)80347-0 CrossRefGoogle Scholar
  29. Reyes AM, Vazquez DS, Zeida A, Hugo M, Piñeyro MD, de Armas MI, Estrin D, Radi R, Santos J, Trujillo M (2016) PRXQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Free Radic Biol Med 101:249–260.  https://doi.org/10.1016/j.freeradbiomed.2016.10.005 CrossRefPubMedGoogle Scholar
  30. Romero-Puertas MC, Laxa M, Mattè A, Zaninotto F, Finkemeier I, Jones AME, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130.  https://doi.org/10.1105/tpc.107.055061 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rouhier N, Gelhaye E, Gualberto JM, Jordy M-N, de Fay E, Hirasawa M, Duplessis S, Lemaire SD, Frey P, Martin F, Manieri W, Knaff DB, Jacquot J-P (2004) Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol 134:1027–1038.  https://doi.org/10.1104/pp.103.035865 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120(1):21–26.  https://doi.org/10.1111/j.0031-9317.2004.0222.x CrossRefPubMedGoogle Scholar
  33. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  34. Schreiber U, Klughammer C (2016) Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. Plant Cell Physiol 57:1454–1467.  https://doi.org/10.1093/pcp/pcw044 CrossRefPubMedGoogle Scholar
  35. Serrato AJ, Fernández-Trijueque J, Barajas-López JDD, Chueca A, Sahrawy M (2013) Plastid thioredoxins: A “one-for-all” redox-signaling system inplants. Front Plant Sci 4:463.  https://doi.org/10.3389/fpls.2013.00463 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci USA 112(17):5539–5544.  https://doi.org/10.1073/pnas.1418223112 CrossRefPubMedGoogle Scholar
  37. Ströher E, Dietz KJ (2008) The dynamic thiol-disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility. Physiol Plantarum 133:566–583.  https://doi.org/10.1111/j.1399-3054.2008.01103.x CrossRefGoogle Scholar
  38. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43.  https://doi.org/10.1111/nph.12797 CrossRefPubMedGoogle Scholar
  39. Thormählen I, Zupok A, Rescher J, Leger J, Weissenberger S, Groysman J, Orwat A, Chatel-Innocenti G, Issakidis-Bourguet E, Armbruster U, Geigenberger P (2017) Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light. Mol Plant 10(1):168–182.  https://doi.org/10.1016/j.molp.2016.11.012 CrossRefPubMedGoogle Scholar
  40. Vaseghi MJ, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Müller SM, Dietz K-J (2018) The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7:e38194.  https://doi.org/10.7554/elife.38194 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang P, Liu J, Liu B, Feng D, Da Q, Shu S, Su J, Zhang Y, Wang J, Wang H-B (2013) Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiol 163:1710–1728.  https://doi.org/10.1104/pp.113.228353 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yoshida K, Hisabori T (2016) Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc Natl Acad Sci USA 113:E3967–E3976.  https://doi.org/10.1073/pnas.1604101113 CrossRefPubMedGoogle Scholar
  43. Yoshida K, Hara A, Sugiura K, Fukaya Y, Hisabori T (2018) Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation inchloroplasts. Proc Natl Acad Sci USA 115:E8296–E8304.  https://doi.org/10.1073/pnas.1808284115 CrossRefPubMedGoogle Scholar
  44. Zaffagnini M, Bedhomme M, Marchand CH, Morisse S, Trost P, Lemaire SD (2012) Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 16:567–586.  https://doi.org/10.1089/ars.2011.4255 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Physiology of Plants, Faculty of BiologyUniversity of BielefeldBielefeldGermany

Personalised recommendations