Stark fluorescence spectroscopy on peridinin–chlorophyll–protein complex of dinoflagellate, Amphidinium carterae

  • Anjue Mane Ara
  • Md. Shakil Bin Kashem
  • Rienk van Grondelle
  • Md. WahadoszamenEmail author
Original article


Because of their peculiar but intriguing photophysical properties, peridinin–chlorophyll–protein complexes (PCPs), the peripheral light-harvesting antenna complexes of photosynthetic dinoflagellates have been unique targets of multidimensional theoretical and experimental investigations over the last few decades. The major light-harvesting chlorophyll a (Chl a) pigments of PCP are hypothesized to be spectroscopically heterogeneous. To study the spectral heterogeneity in terms of electrostatic parameters, we, in this study, implemented Stark fluorescence spectroscopy on PCP isolated from the dinoflagellate Amphidinium carterae. The comprehensive theoretical modeling of the Stark fluorescence spectrum with the help of the conventional Liptay formalism revealed the simultaneous presence of three emission bands in the fluorescence spectrum of PCP recorded upon excitation of peridinin. The three emission bands are found to possess different sets of electrostatic parameters with essentially increasing magnitude of charge-transfer character from the blue to redder ones. The different magnitudes of electrostatic parameters give good support to the earlier proposition that the spectral heterogeneity in PCP results from emissive Chl a clusters anchored at a different sites and domains within the protein network.


Light harvesting Energy transfer Peridinin–chlorophyll–protein complexes Charge-transfer states Stark spectroscopy Spectral heterogeneity 



Md. W., A. M. A., and R. v. G. were supported by the VU University Amsterdam, the Laserlab-Europe Consortium and the advanced investigator Grant (267333, PHOTPROT) from the European Research Council. Md. W. and R. v. G. were supported further by the TOP grant (700.58.305) from the Foundation of Chemical Sciences part of NWO.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11120_2019_688_MOESM1_ESM.docx (196 kb)
Supplementary material 1 (DOCX 196 kb)


  1. Alexandre MT, Lührs DC, Van Stokkum IH, Hiller R, Groot M-L, Kennis JT, Van Grondelle R (2007) Triplet state dynamics in peridinin-chlorophyll-a-protein: a new pathway of photoprotection in LHCs? Biophys J 93(6):2118–2128CrossRefGoogle Scholar
  2. Ara AM, Iimori T, Yoshizawa T, Nakabayashi T, Ohta N (2006) External electric field effects on fluorescence of pyrene butyric acid in a polymer film: concentration dependence and temperature dependence. J Phys Chem B 110(47):23669–23677CrossRefGoogle Scholar
  3. Ara AM, Iimori T, Nakabayashi T, Maeda H, Mizuno K, Ohta N (2007) Electric field effects on absorption and fluorescence spectra of trimethylsilyl-and trimethylsilylethynyl-substituted compounds of pyrene in a PMMA film. J Phys Chem B 111(36):10687–10696CrossRefGoogle Scholar
  4. Bonetti C, Alexandre MT, van Stokkum IH, Hiller RG, Groot ML, van Grondelle R, Kennis JT (2010) Identification of excited-state energy transfer and relaxation pathways in the peridinin–chlorophyll complex: an ultrafast mid-infrared study. Phys Chem Chem Phys 12(32):9256–9266CrossRefGoogle Scholar
  5. Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and materials science. Annu Rev Phys Chem 48(1):213–242CrossRefGoogle Scholar
  6. Carbonera D, Di Valentin M, Spezia R, Mezzetti A (2014) The unique photophysical properties of the Peridinin-Chlorophyll-a-Protein. Curr Protein Pept Sci 15(4):332–350CrossRefGoogle Scholar
  7. Damjanović A, Ritz T, Schulten K (2000) Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae. Biophys J 79(4):1695–1705CrossRefGoogle Scholar
  8. Garab GI, Breton J (1976) Polarized light spectroscopy on oriented spinach chloroplasts fluorescence emission at low temperature. Biochem Biophys Res Commun 71(4):1095–1102CrossRefGoogle Scholar
  9. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272(5269):1788–1791CrossRefGoogle Scholar
  10. Iglesias-Prieto R, Trench R (1996) Spectroscopic properties of chlorophylla in the water-soluble peridinin-chlorophylla-protein complexes (PCP) from the symbiotic dinoflagellate Symbiodinium microadriaticum. J Plant Physiol 149(5):510–516CrossRefGoogle Scholar
  11. Iglesias-Prieto R, Govind N, Trench R (1991) Apoprotein composition and spectroscopic characterization of the water-soluble peridinin—Chlorophyll a—proteins from three symbiotic dinoflagellates. Proc R Soc Lond B 246(1317):275–283CrossRefGoogle Scholar
  12. Kleima FJ, Wendling M, Hofmann E, Peterman EJ, van Grondelle R, van Amerongen H (2000) Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. Biochemistry 39(17):5184–5195CrossRefGoogle Scholar
  13. Knoetzel J, Rensing L (1990) Characterization of the photosynthetic apparatus from the marine dinoflagellate Gonyaulax polyedra: I. Pigment and polypeptide composition of the pigment-protein complexes. J Plant Physiol 136(3):271–279CrossRefGoogle Scholar
  14. Krikunova M, Lokstein H, Leupold D, Hiller RG, Voigt B (2006) Pigment-pigment interactions in PCP of Amphidinium carterae investigated by nonlinear polarization spectroscopy in the frequency domain. Biophys J 90(1):261–271CrossRefGoogle Scholar
  15. Mimuro M, Tamai N, Ishimaru T, Yamazaki I (1990) Characteristic fluorescence components in photosynthetic pigment system of a marine dinoflagellate, Protogonyaulax tamarensis, and excitation energy flow among them. Studies by means of steady-state and time-resolved fluorescence spectroscopy. Biochim Biophys Acta BBA 1016(2):280–287CrossRefGoogle Scholar
  16. Murata N (1986) Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll-protein complexes. In: Govindjee, Amesz J, Fork DJ (eds) Light emission by plants and bacteria. Academic Press, New York, pp 137–159CrossRefGoogle Scholar
  17. Nakabayashi T, Wahadoszamen M, Ohta N (2005) External electric field effects on state energy and photoexcitation dynamics of diphenylpolyenes. J Am Chem Soc 127(19):7041–7052CrossRefGoogle Scholar
  18. Song P-S, Koka P, Prezelin BB, Haxo FT (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Biochemistry 15(20):4422–4427CrossRefGoogle Scholar
  19. Steck K, Wacker T, Welte W, Sharples FP, Hiller RG (1990) Crystallization and preliminary X-ray analysis of a peridinin-chlorophyll a protein from Amphidinium carterae. FEBS Lett 268(1):48–50CrossRefGoogle Scholar
  20. Wahadoszamen M, Hamada T, Iimori T, Nakabayashi T, Ohta N (2007) External electric field effects on absorption, fluorescence, and phosphorescence spectra of diphenylpolyynes in a polymer film. J Phys Chem A 111(38):9544–9552CrossRefGoogle Scholar
  21. Wahadoszamen M, Berera R, Ara AM, Romero E, van Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14(2):759–766CrossRefGoogle Scholar
  22. Wahadoszamen M, Ghazaryan A, Cingil HE, Ara AM, Büchel C, van Grondelle R, Berera R (2014a) Stark fluorescence spectroscopy reveals two emitting sites in the dissipative state of FCP antennas. Biochim Biophys Acta BBA 1837(1):193–200CrossRefGoogle Scholar
  23. Wahadoszamen M, Margalit I, Ara AM, Van Grondelle R, Noy D (2014b) The role of charge-transfer states in energy transfer and dissipation within natural and artificial bacteriochlorophyll proteins. Nat Commun 5:5287CrossRefGoogle Scholar
  24. Wahadoszamen M, Margalit I, Ara AM, van Grondelle R, Noy D (2014c) The role of charge-transfer states in energy transfer and dissipation within natural and artificial bacteriochlorophyll proteins. Nat Commun. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wahadoszamen M, D’Haene S, Ara AM, Romero E, Dekker JP, van Grondelle R, Berera R (2015) Identification of common motifs in the regulation of light harvesting: the case of cyanobacteria IsiA. Biochim Biophys Acta BBA 1847(4):486–492CrossRefGoogle Scholar
  26. Wahadoszamen M, Belgio E, Rahman MA, Ara AM, Ruban AV, Grondelle R (2016) Identification and characterization of multiple emissive species in aggregated minor antenna complexes. Biochim Biophys Acta BBA 1857(12):1917–1924CrossRefGoogle Scholar
  27. Wientjes E, Roest G, Croce R (2012) From red to blue to far-red in Lhca4: how does the protein modulate the spectral properties of the pigments? Biochim Biophys Acta 1817(5):711–717. CrossRefPubMedGoogle Scholar
  28. Zigmantas D, Hiller RG, Sundström V, Polívka T (2002) Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state. Proc Natl Acad Sci USA 99(26):16760–16765CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of SciencesVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Department of PhysicsJagannath UniversityDhakaBangladesh
  3. 3.Department of PhysicsUniversity of DhakaDhakaBangladesh

Personalised recommendations