Advertisement

Photosynthesis Research

, Volume 139, Issue 1–3, pp 449–460 | Cite as

Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum

  • Ottó Zsiros
  • Valéria Nagy
  • Árpád Párducz
  • Gergely Nagy
  • Renáta Ünnep
  • Hassan El-Ramady
  • József Prokisch
  • Zsuzsa Lisztes-Szabó
  • Miklós Fári
  • József Csajbók
  • Szilvia Zita Tóth
  • Győző Garab
  • Éva Domokos-SzabolcsyEmail author
Original Article
  • 122 Downloads

Abstract

Selenium (Se) is a natural trace element, which shifts its action in a relatively narrow concentration range from nutritional role to toxicity. Although it has been well established that in plants chloroplasts are among the primary targets, the mechanism of toxicity on photosynthesis is not well understood. Here, we compared selenate and red-allotrope elemental selenium nanoparticles (red nanoSe) in in vitro tobacco cultures to investigate their effects on the structure and functions of the photosynthetic machinery. Selenate at 10 mg/L concentration retarded plant growth; it also led to a decreased chlorophyll content, accompanied with an increase in the carotenoid-to-chlorophyll ratio. Structural examinations of the photosynthetic machinery, using electron microscopy, small-angle neutron scattering and circular dichroism spectroscopy, revealed significant perturbation in the macro-organization of the pigment-protein complexes and sizeable shrinkage in the repeat distance of granum thylakoid membranes. As shown by chlorophyll a fluorescence transient measurements, these changes in the ultrastructure were associated with a significantly diminished photosystem II activity and a reduced performance of the photosynthetic electron transport, and an enhanced capability of non-photochemical quenching. These changes in the structure and function of the photosynthetic apparatus explain, at least in part, the retarded growth of plantlets in the presence of 10 mg/L selenate. In contrast, red nanoSe, even at 100 mg/L and selenate at 1 mg/L, exerted no negative effect on the growth of plantlets and affected only marginally the thylakoid membrane ultrastructure and the photosynthetic functions.

Keywords

Chlorophyll fluorescence transients Chloroplast thylakoid membranes Circular dichroism Electron microscopy Nicotiana tabacum Selenate and Se-nanoparticles Small-angle neutron scattering 

Notes

Acknowledgements

This research was supported by the “ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities” and by grants from the National Research Development and Innovation Office of Hungary (OTKA KH 124985 to GG and GINOP-2.2.1-15-2017-00051 to MF and OTKA NN 114524 to SZT). Zs L-SZ was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2.-15-2016-00009 ‘ICER’.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no kind of conflicts of interest.

References

  1. Akbulut M, Cakir S (2010) The effect of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48:160–166CrossRefGoogle Scholar
  2. Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703CrossRefGoogle Scholar
  3. Ayres M, Ayres M Jr, Ayres DL, Santos AS (1998) BioEstat. Versão 1.0, Sociedade Civil Mamirauá, MCT – CNPq. Belém, ParáGoogle Scholar
  4. Babaei A, Ranglová K, Malapascua JR, Masojídek J (2017) The synergistic effect of Selenium (selenite, –SeO3 2−) dose and irradiance intensity in Chlorella cultures. AMB Express 7:56CrossRefGoogle Scholar
  5. Banuelos GS, Lin ZQ (2005) Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxicol Environ Saf 62:309–316CrossRefGoogle Scholar
  6. Banuelos LG, Hermosillo-Cereceres MA, Esteban MS (2011) The importance of selenium biofortification in food crops. Curr Nutr Food Sci 7:181–190CrossRefGoogle Scholar
  7. Cabanero AI, Madrid Y, Camara C (2004) Selenium and mercury bioaccessibility in fish samples: an in vitro digestion method. Anal Chim Acta 526:51–61CrossRefGoogle Scholar
  8. Çiçek N, Oukarroum A, Strasser RJ, Schansker G (2018) Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynth Res 136(3):291–301.  https://doi.org/10.1007/s11120-017-0463-y CrossRefGoogle Scholar
  9. De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:30–35Google Scholar
  10. Demmig-Adams B, Garab G, Adams III WW, Govindjee (2014) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, vol 40. Springer, DordrechtGoogle Scholar
  11. Dernovics M, Stefanka Z, Fodor P (2002) Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal Bioanal Chem 372:473–480CrossRefGoogle Scholar
  12. Djanaguiraman M, Durga Devi D, Shanker AK, Sheeba A, Bangarusamy U (2005) Selenium—an antioxidative protectant in soybean during senescence. Plant Soil 272:77–86CrossRefGoogle Scholar
  13. Dobrikova AG, Domonkos I, Sozer O, Laczko-Dobos H, Kis M, Parducz A, Gombos Z, Apostolova EL (2013) Effect of partial or complete elimination of light-harvesting complexes on the surface electric properties and the functions of cyanobacterial photosynthetic membranes. Physiol Plant 147:248–260CrossRefGoogle Scholar
  14. Domokos-Szabolcsy É, Márton L, Sztrik A, Babka B, Prokisch J, Fári M (2012) Accumulation of red elemental nanoparticles and their biological effects in Nicotiana tabacum. Plant Growth Regul 68:525–531CrossRefGoogle Scholar
  15. Domokos-Szabolcsy É, Abdalla N, Alshaal T, Shalaby T, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510CrossRefGoogle Scholar
  16. El-Ramady H, Domokos-Szabolcsy É, Abdalla N, Alshaal T, Shalaby T, Sztrik A, Prokisch J, Fári M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510CrossRefGoogle Scholar
  17. El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SE-DA, Shams SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon-Smits EAH, Domokos-Szabolcsy E (2015) Selenium and its role in higher plants. In: Lichtfouse E et al (eds) Pollutants in buildings, water and living organisms, environmental chemistry for a sustainable world, vol 7. Springer, Cham, pp 235–296.  https://doi.org/10.1007/978-3-319-19276-5_6 CrossRefGoogle Scholar
  18. Eszenyi P, Sztrik A, Babka B, Prokisch J (2011) Elemental, nano-sized (100–500 nm) selenium production by probiotic lactic acid bacteria. Int J Biosci Biochem Bioinform 1:148–152Google Scholar
  19. Garab G, van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146CrossRefGoogle Scholar
  20. Garab G, Kieleczawa J, Sutherland JC, Bustamante C, Hind G (1991) Organization of pigment protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem Photobiol 54:273–281CrossRefGoogle Scholar
  21. Geoffroy L, Gilbin R, Simon O, Floriani M, Adam C, Pradines C, Cournac L, Garnier-Laplace J (2007) Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii. Aquat Toxicol 2:149–158CrossRefGoogle Scholar
  22. Gissel-Nielsen G, Bisbjerg B (1970) The uptake of applied selenium by agricultural plants. Plant Soil 32:382–396CrossRefGoogle Scholar
  23. Gojkovic Z, Vílchez C, Torronteras R, Vigara J, Gómez-Jacinto V, Janzer N, Gómez-Ariza J, Márová I, Garbayo I (2014) Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture. Sci World J  https://doi.org/10.1155/2014/401265 Google Scholar
  24. Gussakovsky EE, Barzda V, Shahak Y, Garab G (1997) Irreversible disassembly of chiral macrodomains in thylakoids due to photoinhibition. Photosynth Res 51:119–126CrossRefGoogle Scholar
  25. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988CrossRefGoogle Scholar
  26. Hurd-Karrer AM (1935) Factors affecting the absorption of selenium from soils by plants. J Agr Res 50:413–427Google Scholar
  27. Jajoo A, Szabó M, Zsiros O, Garab G (2012) Low pH induced structural reorganization in thylakoid membranes. Biochim Biophys Acta 1817:1388–1391CrossRefGoogle Scholar
  28. Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039CrossRefGoogle Scholar
  29. Kirchhoff H, Hall C, Wood M, Herbstová M, Tsabari O, Nevo R, Charuvi D, Shimoni E, Reich Z (2011) Dynamic control of protein diffusion within the granal thylakoid lumen. Proc Natl Acad Sci USA 108:20248–20253CrossRefGoogle Scholar
  30. Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102CrossRefGoogle Scholar
  31. Longchamp M, Angeli N, Castec-Roulle M (2013) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362:107–117CrossRefGoogle Scholar
  32. Magyar M, Sipka G, Kovács L, Ughy B, Zhu Q, Han G, Špunda V, Lambrev PH, Shen JR, Garab G (2018) Rate-limiting steps in the dark-to-light transition of Photosystem II-revealed by chlorophyll-a fluorescence induction. Sci Rep 8:2755CrossRefGoogle Scholar
  33. Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18:20–52CrossRefGoogle Scholar
  34. Molnárová M, Fargasová A (2009) Se(IV) phytotoxicity for monocotyledonae cereals (Hordeum vulgare L., Triticum eastivum L.) and dicotyledonae crops (Sinapsis alba L., Brassica napus L.). J Hazard Mater 172:854–861CrossRefGoogle Scholar
  35. Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71CrossRefGoogle Scholar
  36. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissues cultures. Plant Physiol 15:473–497CrossRefGoogle Scholar
  37. Nagy G, Kovács L, Ünnep R, Zsiros O, Almásy L, Rosta L, Timmins P, Peters J, Posselt D, Garab G (2013) Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering. Eur Phys J E 36:69CrossRefGoogle Scholar
  38. Nagy G, Ünnep R, Zsiros O, Tokutsu R, Takizawa K, Porcar L, Moyet L, Petroutsos D, Garab G, Finazzi G, Minagawa J (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci USA 111:5042–5047CrossRefGoogle Scholar
  39. Padmaja K, Prasad DDK, Prasad ARK (1989) Affect of selenium on chlorophyll biosynthesis in mung bean seedlings. Phytochemistry 28:3321–3324CrossRefGoogle Scholar
  40. Palomo-Siguero M, Lopez-Heras MI, Camara C, Madrid Y (2015) Accumulation and biotransformation of chitosan-modified selenium nanoparticles in exposed Radish (Raphanus stivus). J Anal At Spectrsc 30:137–1244Google Scholar
  41. Pilon-Smits EAH, Quinn C (2010) Selenium metabolism in plants. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Plant cell monographs, vol 17. Springer, Berlin, pp 225–241CrossRefGoogle Scholar
  42. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394CrossRefGoogle Scholar
  43. Posselt D, Nagy G, Kirkensgaard JJK, Holm JK, Aagaard TH, Timmins P, Retfalvi E, Rosta L, Kovacs L, Garab G (2012) Small-angle neutron scattering study of the ultrastructure of chloroplast thylakoid membranes—periodicity and structural flexibility of stroma lamellae. Biochim Biophys Acta 1817:1220–1228CrossRefGoogle Scholar
  44. Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1:72–96CrossRefGoogle Scholar
  45. Saffaryazdi A, Lahouti M, Ganjeali A, Bayat H (2012) Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Not Sci Biol 4(4):95–100CrossRefGoogle Scholar
  46. Schansker G, Tóth SZ, Strasser RJ RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706(3):250–261CrossRefGoogle Scholar
  47. Schansker G, Tóth SZ, Holzwarth AR, Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 120:43–58CrossRefGoogle Scholar
  48. Schiavon M, Pilon-Smits EAH (2017) The fascinating facets of plant selenium accumulation—biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596CrossRefGoogle Scholar
  49. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389CrossRefGoogle Scholar
  50. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–342CrossRefGoogle Scholar
  51. Terry N, Zayed AM, Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Phys Plant Mol Biol 51:401–432CrossRefGoogle Scholar
  52. Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392CrossRefGoogle Scholar
  53. Tóth NT, Rai N, Solymosi K, Zsiros O, Schröder W, Garab G, Amerongen H, Horton P, Kovács L (2016) Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim Biophys Acta 1857:1479–1489CrossRefGoogle Scholar
  54. Ünnep R, Nagy G, Markó M, Garab G (2014a) Monitoring thylakoid ultrastructural changes in vivo using small-angle neutron scattering. Plant Physiol Biochem 81:197–207CrossRefGoogle Scholar
  55. Ünnep R, Zsiros O, Solymosi K, Kovács L, Lambrev PH, Tóth T, Schweins R, Posselt D, Székely NK, Rosta L, Nagy G, Garab G (2014b) The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim Biophys Acta 1837:1572–1580CrossRefGoogle Scholar
  56. Valdez Barillas JR, Quinn CF, Freeman JL, Lindblom SD, Fakra SC, Marcus MA, Gilligan TM, Alford ÉR, Wangeline AL, Pilon-Smits EAH (2012) Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners. Plant Physiol 159:1834–1844CrossRefGoogle Scholar
  57. van Wijk KJ, Kessler F (2017) Plastoglobuli: plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu Rev Plant Biol 68(1):253–289CrossRefGoogle Scholar
  58. van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253Google Scholar
  59. Vítová M, Bišová K, Hlavová M, Zachleder V, Rucki M, Čížková M (2011) Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat Toxicol 102:87–94CrossRefGoogle Scholar
  60. Wang MC, Chen HM (2003) Forms and distribution of selenium at different depth and among particle size fractions of three. Taiwan Soils Chemosphere 52:585–593CrossRefGoogle Scholar
  61. Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 42:1524–1533CrossRefGoogle Scholar
  62. White PJ (2016) Selenium accumulation by plants. Ann Bot 117(2):217–235Google Scholar
  63. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937CrossRefGoogle Scholar
  64. Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicol Sci 101:22–31CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ottó Zsiros
    • 1
  • Valéria Nagy
    • 1
  • Árpád Párducz
    • 2
  • Gergely Nagy
    • 1
    • 3
    • 4
  • Renáta Ünnep
    • 3
    • 4
  • Hassan El-Ramady
    • 5
    • 8
  • József Prokisch
    • 6
  • Zsuzsa Lisztes-Szabó
    • 7
  • Miklós Fári
    • 8
  • József Csajbók
    • 9
  • Szilvia Zita Tóth
    • 1
  • Győző Garab
    • 1
    • 10
  • Éva Domokos-Szabolcsy
    • 8
    Email author
  1. 1.Institute of Plant Biology, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  2. 2.Institute of Biophysics, Biological Research CenterHungarian Academy of SciencesSzegedHungary
  3. 3.Laboratory for Neutron ScatteringPaul Scherrer InstituteVilligen PSISwitzerland
  4. 4.Institute for Solid State Physics and Optics, Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  5. 5.Department of Soil and Water Sciences, Faculty of AgricultureKafrelsheikh UniKafr El-SheikhEgypt
  6. 6.Bio- and Environmental Enegetics Inst., Nano Food LabDebrecen UniversityDebrecenHungary
  7. 7.Isotope Climatology and Environmental Research Centre, Institute for Nuclear ResearchHungarian Academy of SciencesDebrecenHungary
  8. 8.Department of Agricultural Botany, Plant Physiology and BiotechnologyUniversity of DebrecenDebrecenHungary
  9. 9.Department of Crop Production and Applied EcologyUniversity of DebrecenDebrecenHungary
  10. 10.Department of Physics, Faculty of ScienceOstrava UniversityOstrava – Slezská OstravaCzech Republic

Personalised recommendations