Advertisement

Photosynthesis Research

, Volume 140, Issue 2, pp 173–188 | Cite as

Stable nuclear transformation of rhodophyte species Porphyridium purpureum: advanced molecular tools and an optimized method

  • Binod Prasad
  • Wolfgang Lein
  • General Thiyam
  • Christoph Peter Lindenberger
  • Rainer Buchholz
  • Nithya VadakedathEmail author
Original Article

Abstract

A mutated phytoene desaturase (pds) gene, pds-L504R, conferring resistance to the herbicide norflurazon has been reported as a dominant selectable marker for the genetic engineering of microalgae (Steinbrenner and Sandmann in Appl Environ Microbiol 72:7477–7484, 2006; Prasad et al. in Appl Microbiol Biotechnol 98(20):8629–8639, 2014). However, this mutated genomic clone harbors several introns and the entire expression cassette including its native promoter and terminator has a length > 5.6 kb, making it unsuitable as a standard selection marker. Therefore, we designed a synthetic, short pds gene (syn-pds-int) by removing introns and unwanted internal restriction sites, adding suitable restriction sites for cloning purposes, and introduced the first intron from the Chlamydomonas reinhardtii RbcS2 gene close to the 5′end without changing the amino acid sequence. The syn-pds-int gene (1872 bp) was cloned into pCAMBIA 1380 under the control of a short sequence (615 bp) of the promoter of pds (pCAMBIA 1380-syn-pds-int). This vector and the plasmid pCAMBIA1380-pds-L504R hosting the mutated genomic pds were used for transformation studies. To broaden the existing transformation portfolio, the rhodophyte Porphyridium purpureum was targeted. Agrobacterium-mediated transformation of P. purpureum with both the forms of pds gene, pds-L504R or syn-pds-int, yielded norflurazon-resistant (NR) cells. This is the first report of a successful nuclear transformation of P. purpureum. Transformation efficiency and lethal norflurazon dosage were determined to evaluate the usefulness of syn-pds-int gene and functionality of the short promoter of pds. PCR and Southern blot analysis confirmed transgene integration into the microalga. Both forms of pds gene expressed efficiently as evidenced by the stability, tolerance and the qRT-PCR analysis. The molecular toolkits and transformation method presented here could be used to genetically engineer P. purpureum for fundamental studies as well as for the production of high-value-added compounds.

Keywords

Porphyridium purpureum Agrobacterium tumefaciens Transformation Phytoene desaturase Norflurazon-resistant 

Notes

Acknowledgements

The authors are thankful to Dr. J. Steinbrenner (Universität Konstanz, Germany) and Prof. Choi PS (Nambu University, South Korea) for kindly providing the plasmid pPLAT-pds-L504R and Agrobacterium tumefaciens strain LBA4404, respectively. The authors also appreciate the funding bodies Korea Institute of Advanced Technology, Korea, and the Federal Ministry of Education and Research, Germany for supporting the work. BP also acknowledges Lehrstuhl für Bioverfahrenstechnik, Friedrich-Alexander-University of Erlangen Nuremberg, Germany for the research support.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

11120_2018_587_MOESM1_ESM.docx (901 kb)
Supplementary material 1 (DOCX 900 KB)

References

  1. Ali S, Xianyin Z, Xue Q, Hassan MJ, Qian H (2007) Investigations for improved genetic transformation mediated by Agrobacterium tumefaciens in two rice cultivars. Biotechnol 6:138–147CrossRefGoogle Scholar
  2. Allnutt FCT, Kyle DJ, Grossman AR, Apt KE (2000) Methods and tools for transformation of eukaryotic algae. United States of America, Patent Number, p 6027900Google Scholar
  3. Andersen RA, Berges JA, Harrison PJ, Watanabe MM (2005) Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 429–538Google Scholar
  4. Anila N, Chandrashekar A, Ravishankar GA, Sarada R (2011) Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. Eur J Phycol 46(1):36–44CrossRefGoogle Scholar
  5. Bai LL, Yin WB, Chen YH, Niu LL, Sun YR, Zhao SM, Yang FQ, Wang RRC, Wu Q, Zhang XQ, Hu ZM (2013) A new strategy to produce a defensin: stable production of mutated NP-1 in nitrate reductase-deficient Chlorella ellipsoidea. PLoS ONE 8(1):e54966CrossRefGoogle Scholar
  6. Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24:523–531CrossRefGoogle Scholar
  7. Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber AP, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hilliou F, Egizi A, Perrineau MM, Yoon HS (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941CrossRefGoogle Scholar
  8. Brodie J, Chan CX, De Clerck O, Cock JM, Coelho SM, Gachon C, Grossman AR, Mock T, Raven JA, Smith AG, Yoon HS (2017) The algal revolution. Trends Plant Sci 22(8):726–738CrossRefGoogle Scholar
  9. Bruggeman AJ, Kuehler D, Weeks DP (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J 12:894–902CrossRefGoogle Scholar
  10. Cadoret JP, Garnier M, Jean BS (2012) Microalgae, functional genomics and biotechnology. Adv Bot Res 64:285–341CrossRefGoogle Scholar
  11. Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green algae, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779CrossRefGoogle Scholar
  12. Cheng R, Ma R, Li K, Rong H, Lin X, Wang Z, Yang S, Ma Y (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol Res 167(3):179–186CrossRefGoogle Scholar
  13. Chomczynski P, Mackey K (1995) Short technical report. Modification of the TRIZOL reagent procedure for isolation of RNA from Polysaccharide-and proteoglycan-rich sources. Biotechniques 19(6):942–945Google Scholar
  14. Den Dulk-Ras A, Hooykaas PJJ (1995) Electroporation of Agrobacterium tumefaciens. In: Nickoloff JA (ed) Plant cell electroporation and electrofusion protocols (Methods in Molecular Biology). Humana Press, Totowa, pp 63–73CrossRefGoogle Scholar
  15. Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae—from tools to applications. Front Plant Sci 7:505CrossRefGoogle Scholar
  16. Gangl D, Zedler JAZ, Rajakumar PD, Martinez EMR, Riseley A, Włodarczyk A, Purton S, Sakuragi Y, Howe CJ, Jensen PE, Robinson C (2015) Biotechnological exploitation of microalgae. J Exp Bot 66:6975–6990CrossRefGoogle Scholar
  17. García JL, Vicente M, Galan B (2017) Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 10(5):1017–1024CrossRefGoogle Scholar
  18. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘Gene-Jockeying’ tool. Microbiol Mol Biol Rev 67:16–37CrossRefGoogle Scholar
  19. Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38(12):1879–1890CrossRefGoogle Scholar
  20. Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology—from genetics to synthetic biology. Biotechnol Adv 33:1194–1203CrossRefGoogle Scholar
  21. Hu Z, Wu Y, Li W, Gao H (2006) Factors affecting Agrobacterium mediated genetic transformation of Lycium barbarum L. Vitro Cell Dev Biol Plant 42:461–466CrossRefGoogle Scholar
  22. Jaeger D, Hübner W, Huser T, Mussgnug JH, Kruse O (2017) Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum. J Biotechnol 249:10–15CrossRefGoogle Scholar
  23. Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82(3):393–412CrossRefGoogle Scholar
  24. Karami O (2008) Factors Affecting Agrobacterium-mediated transformation of plants. Transgenic Plant J 2(2):127–137Google Scholar
  25. Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation of the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J Phycol 45:642–649CrossRefGoogle Scholar
  26. Katiyar R, Gurjar BR, Biswas S, Pruthi V, Kumar N, Kumar P (2017) Microalgae: an emerging source of energy based bio-products and a solution for environmental issues. Renew Sust Energ Rev 72:1083–1093CrossRefGoogle Scholar
  27. Kavitha MD, Kathiresan S, Bhattacharya S, Sarada R (2016) Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid. J Food Sci Technol 53(5):2270–2278CrossRefGoogle Scholar
  28. Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29:109–117CrossRefGoogle Scholar
  29. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738CrossRefGoogle Scholar
  30. Kumar S, Raja SK, Sharmab AK, Varmac HN (2012) Genetic transformation and development of Cucumber mosaic virus resistant transgenic plants of Chrysanthemum morifolium cv. Kundan. Sci Hortic 134:40–45CrossRefGoogle Scholar
  31. Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M (2002) Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 129:7–12CrossRefGoogle Scholar
  32. León R, Fernandez E (2007) Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. Adv Exp Med Biol 616:1–11CrossRefGoogle Scholar
  33. Liu J, Zhong Y, Sun Z, Huang J, Sandmann G, Chen F (2010) One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 232(1):61–67CrossRefGoogle Scholar
  34. Liu J, Gerken H, Huang J, Chen F (2013) Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Proc Biochem 48:788–795CrossRefGoogle Scholar
  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefGoogle Scholar
  36. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447CrossRefGoogle Scholar
  37. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339(1):69–72CrossRefGoogle Scholar
  38. Mussgnug JH (2015) Genetic tools and techniques for Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 99(13):5407–5418CrossRefGoogle Scholar
  39. Muto M, Fukuda Y, Nemoto M, Yoshino T, Matsunaga T, Tanaka T (2013) Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580—a high triglyceride producer. Mar Biotechnol 15:48–55CrossRefGoogle Scholar
  40. Naing AH, Ai TN, Jeon SM, Lim SH, Kim CK (2016) An efficient protocol for Agrobacterium-mediated genetic transformation of recalcitrant chrysanthemum cultivar Shinma. Acta Physiol Plant 38(2):38CrossRefGoogle Scholar
  41. Ng I-S, Tan S-I, Kao P-H, Chang Y-K, Chang J-S (2017) Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J.  https://doi.org/10.1002/biot.201600644 Google Scholar
  42. Noda J, Mühlroth A, Bučinská L, Dean J, Bones AM, Sobotka R (2017) Tools for biotechnological studies of the freshwater alga Nannochloropsis limnetica: antibiotic resistance and protoplast production. J Appl Phycol 29(2):853–863CrossRefGoogle Scholar
  43. Oudot-Le Secq M-P, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BV (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277(4):427–439CrossRefGoogle Scholar
  44. Prasad B, Nithya V, Jeong HJ, General T, Cho M-Gi, Lein W (2014) Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species). Appl Microbiol Biotechnol 98(20):8629–8639CrossRefGoogle Scholar
  45. Prasad B, Lein W, Lindenberger CP, Buchholz R, Vadakedath N (2018) An optimized method and a dominant selectable marker for genetic engineering of an industrially promising microalga—Pavlova lutheri. J Appl Phycol.  https://doi.org/10.1007/s10811-018-1617-9 Google Scholar
  46. Pratheesh PT, Vineetha M, Kurup GM (2014) An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Mol Biotechnol 56(6):507–515CrossRefGoogle Scholar
  47. Purton S, Szaub JB, Wannathong T, Young R, Economou CK (2013) Genetic engineering of algal chloroplasts: progress and prospects. Rus J Plant Physiol 60(4):521–528CrossRefGoogle Scholar
  48. Rathod JP, Prakash G, Pandit R, Lali AM (2013) Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri. Photosynth Res 118(1):141–146CrossRefGoogle Scholar
  49. Reddy PH, Johnson AMA, Kumar JK, Naveen T, Devi MC (2017) Heterologous expression of Infectious bursal disease virus VP2 gene in Chlorella pyrenoidosa as a model system for molecular farming. Plant Cell Tissue Organ Cult 131(1):119–126CrossRefGoogle Scholar
  50. Sato N, Moriyama T, Mori N, Toyoshima M (2017) Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 33(4):74CrossRefGoogle Scholar
  51. Sharon-Gojman R, Maimon E, Leu S, Zarka A, Boussiba S (2015) Advanced methods for genetic engineering of Haematococcus pluvialis (Chlorophyceae, Volvocales). Algal Res 10:8–15CrossRefGoogle Scholar
  52. Simon DP, Anila N, Gayathri K, Sarada R (2016) Heterologous expression of β-carotene hydroxylase in Dunaliella salina by Agrobacterium-mediated genetic transformation. Algal Res 18:257–265CrossRefGoogle Scholar
  53. Srinivasan R, Gothandam KM (2016) Synergistic action of D-glucose and acetosyringone on Agrobacterium strains for efficient Dunaliella transformation. PLoS ONE 11(6):e0158322CrossRefGoogle Scholar
  54. Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484CrossRefGoogle Scholar
  55. Úbeda-Mínguez P, Chileh T, Dautor Y, García-Maroto F, Alonso DL (2015) Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga-Tetraselmis chuii. J Appl Phycol 27(1):223–232CrossRefGoogle Scholar
  56. Velea S, Ilie L, Filipescu L (2011) Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate. UPB Sci Bull Series B 73(4):81–94Google Scholar
  57. Wang C, Wang Y, Su Q, Gao X (2007) Transient expression of the GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95, via electroporation. Biotechnol Bioprocess Eng 12:180–183CrossRefGoogle Scholar
  58. Wei X, Chen C, Yu Q, Gady A, Yu Y, Liang G, Gmitter FG Jr (2014) Comparison of carotenoid accumulation and biosynthetic gene expression between Valencia and Rohde Red Valencia sweet oranges. Plant Sci 227:28–36CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Bioprocess EngineeringFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  2. 2.Institute for BiotechnologyTechnical University BerlinBerlinGermany
  3. 3.Department of BiotechnologyDongseo UniversityBusanSouth Korea
  4. 4.Institute of Bioprocess EngineeringFriedrich-Alexander-University of Erlangen Nuremberg Busan CampusBusanSouth Korea

Personalised recommendations