Photosynthesis Research

, Volume 138, Issue 1, pp 115–128 | Cite as

Is vegetative area, photosynthesis, or grape C uploading involved in the climate change-related grape sugar/anthocyanin decoupling in Tempranillo?

  • Carolina Salazar-Parra
  • Iker Aranjuelo
  • Inmaculada Pascual
  • Jone Aguirreolea
  • Manuel Sánchez-Díaz
  • Juan José Irigoyen
  • José Luis Araus
  • Fermín Morales
Original Article


Foreseen climate change is expected to impact on grape composition, both sugar and pigment content. We tested the hypothesis that interactions between main factors associated with climate change (elevated CO2, elevated temperature, and water deficit) decouple sugars and anthocyanins, and explored the possible involvement of vegetative area, photosynthesis, and grape C uploading on the decoupling. Tempranillo grapevine fruit-bearing cuttings were exposed to CO2 (700 vs. 400 ppm), temperature (ambient vs. + 4 °C), and irrigation levels (partial vs. full) in temperature-gradient greenhouses. In a search for mechanistic insights into the underlying processes, experiments 1 and 2 were designed to maximize photosynthesis and enlarge leaf area range among treatments, whereas plant growth was manipulated in order to deliberately down-regulate photosynthesis and control vegetative area in experiments 3 and 4. Towards this aim, treatments were applied either from fruit set to maturity with free vegetation and fully irrigated or at 5–8% of pot capacity (experiments 1 and 2), or from veraison to maturity with controlled vegetation and fully irrigated or at 40% of pot capacity (experiments 3 and 4). Modification of air 13C isotopic composition under elevated CO2 enabled the further characterization of whole C fixation period and C partitioning to grapes. Increases of the grape sugars-to-anthocyanins ratio were highly and positively correlated with photosynthesis and grape 13C labeling, but not with vegetative area. Evidence is presented for photosynthesis, from fruit set to veraison, and grape C uploading, from veraison to maturity, as key processes involved in the establishment and development, respectively, of the grape sugars to anthocyanins decoupling.


Climate change Grapevine Harvest date Leaf area Photosynthesis Sugars/anthocyanins decoupling 



Net photosynthesis


Partially irrigated


Photosynthetic photon flux density


Ambient temperature


Temperature-gradient greenhouse


Total organic matter


Total soluble solids


Elevated temperature


Well irrigated


Water-soluble compounds


C isotopic composition



Science and Innovation (BFU2008-01405/BFI), Economy and Competitiveness (AGL2014-56075-C2-1-R) Spanish Ministries, Aragón Government (A03 group) and the Basque Government (IT-932-16) for financial support, Navarra University “Asociación de Amigos” for Carolina Salazar-Parra grant, A. Urdiain, M. Oyarzun for excellent technical assistance, and EVENA for dormant cuttings supply.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11120_2018_552_MOESM1_ESM.docx (46 kb)
Supplementary material 1—List of some Tempranillo grapevine traits used in this research. (DOCX 45 KB)


  1. Aranjuelo I, Pardo A, Biel C, Savé R, Azcón-Bieto J, Nogués S (2009) Leaf carbon management in slow-growing plants exposed to elevated CO2. Glob Change Biol 15:97–109CrossRefGoogle Scholar
  2. Aranjuelo I, Cabrera-Bosquet L, Morcuende R, Avice JC, Nogués S, Araus JL, Martínez-Carrasco R, Pérez P (2011) Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J Exp Bot 62:3957–3969CrossRefGoogle Scholar
  3. Arrizabalaga M, Morales F, Oyarzun M, Delrot S, Gomès E, Irigoyen JJ, Hilbert G, Pascual I (2018) Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature. Plant Sci 267:74–83CrossRefGoogle Scholar
  4. Barnuud NN, Zerihun A, Gibberd M, Bates B (2014) Berry composition and climate: responses and empirical models. Int J Biometeorol 58:1207–1223CrossRefGoogle Scholar
  5. Bock A, Sparks T, Estrella N, Menzel A (2013) Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010. PLoS ONE 8:e69015CrossRefGoogle Scholar
  6. Bonada M, Jeffery DW, Petrie PR, Moran MA, Sadras VO (2015) Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust J Grape Wine Res 21:240–253CrossRefGoogle Scholar
  7. Caccavello G, Giaccone M, Scognamiglio P, Forlani M, Basile B (2017) Influence of intensity of post-veraison defoliation or shoot trimming on vine physiology, yield components, berry and wine composition in Aglianico grapevines. Aust J Grape Wine Res 23:226–239CrossRefGoogle Scholar
  8. Carbonell-Bejerano P, Santa María E, Torres-Pérez R, Royo C, Lijavetzky D, Bravo G, Aguirreolea J, Sánchez-Díaz M, Antolín MC, Martínez-Zapater JM (2013) Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Plant Cell Physiol 54:1200–1216CrossRefGoogle Scholar
  9. Cook BI, Wolkovich EM (2016) Climate change decouples drought from early winegrape harvests in France. Nature Clim Change 6:715–719CrossRefGoogle Scholar
  10. Coombe BG, Iland PG (2005) Grape berry development and winegrape quality. In: Dry PR, Coombe BG (eds) Viticulture. Volume 1—resources. Winetitles, Adelaide, pp 210–248Google Scholar
  11. Coombe BG, McCarthy MG (2000) Dynamics of grape berry growth and physiology of ripening. Aust J Grape Wine Res 6:131–135CrossRefGoogle Scholar
  12. Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 on woody plant mass, form and physiology. Oecologia 113:299–313CrossRefGoogle Scholar
  13. Drake BG, González-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol 48:609–639CrossRefGoogle Scholar
  14. Drenjancevic M, Jukic V, Zmaic K, Kujundzic T, Rastija V (2017) Effects of early leaf removal on grape yield, chemical characteristics, and antioxidant activity of grape variety Cabernet Sauvignon and wine from eastern Croatia. Acta Agric Scand Sect B Soil Plant Sci 67:705–711Google Scholar
  15. Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99CrossRefGoogle Scholar
  16. Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland CK (1997) Maximum and minimum temperatures for the globe. Science 277:364–366CrossRefGoogle Scholar
  17. Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot 64:1451–1469CrossRefGoogle Scholar
  18. Famiani F, Farinelli D, Palliotti A, Moscatello S, Battistelli A, Walker RP (2014) Is stored malate the quantitatively most important substrate utilised by respiration and ethanolic fermentation in grape berry pericarp during ripening? Plant Physiol Biochem 76:52–57CrossRefGoogle Scholar
  19. Filippetti I, Movahed N, Allegro G, Valentini G, Pastore C, Colucci E, Intrieri C (2015) Effect of post-veraison source limitation on the accumulation of sugar, anthocyanins and seed tannins in Vitis vinifera cv. Sangiovese berries. Aust J Grape Wine Res 21:90–100CrossRefGoogle Scholar
  20. Frioni T, Tombesi S, Silvestroni O, Lanari V, Bellincontro A, Sabbatini P, Gatti M, Poni S, Palliotti A (2016) Post-budburst spur-pruning reduces yield and delays fruit sugar accumulation in cv. Sangiovese in central Italy. Am J Enol Vitic 67:419–425CrossRefGoogle Scholar
  21. García J, Zheng W, Balda P, Martínez de Toda F (2017) Varietal differences in the sugar content of red grapes at the onset of anthocyanin synthesis. Vitis 56:15–18Google Scholar
  22. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104CrossRefGoogle Scholar
  23. Godden PW, Gishen M (2005) Trends in the composition of Australian wine 1984–2004. Aust N Z Wine Ind J 20:21–46Google Scholar
  24. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Nat Acad Sci USA 110:6907–6912CrossRefGoogle Scholar
  25. Hayes MA, Davies C, Dry IB (2007) Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J Exp Bot 58:1985–1997CrossRefGoogle Scholar
  26. Herrera JC, Bucchetti B, Sabbatini P, Comuzzo P, Zulini L, Vecchione A, Peterlunger E, Castellarin SD (2015) Effect of water deficit and severe shoot trimming on the composition of Vitis vinifera L. Merlot grapes and wines. Aust J Grape Wine Res 21:254–265CrossRefGoogle Scholar
  27. Iland P, Gago P (2002) Australia wines. Styles and tastes. Patrick Iland Wine Promotions, CampbelltownGoogle Scholar
  28. IPCC (2014) Intergovernmental panel on climate change. Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change, mitigation of climate change. contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  29. Irigoyen JJ, Goicoechea N, Antolín MC, Pascual I, Sánchez-Díaz M, Aguirreolea J, Morales F (2014) Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: an updated survey. Plant Sci 226:22–29CrossRefGoogle Scholar
  30. Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality—a review. Am J Enol Vitic 44:409–430Google Scholar
  31. Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261Google Scholar
  32. Jones GV, Duchêne E, Tomasi D, Yuste J, Braslavska O, Schultz HR, Martínez C, Boso S, Langellier F, Perruchot C, Guimberteau G (2005) Changes in European winegrape phenology and relationships with climate. In: Proceedings of the XIV GESCO Symposium, Vol. 1, Geisenheim, Germany, pp 55–61Google Scholar
  33. Keller M, Mills LJ, Wample RL, Spayd SE (2005) Cluster thinning effects on three deficit-irrigated Vitis vinifera cultivars. Am J Enol Vitic 56:91–103Google Scholar
  34. Kizildeniz T, Mekni I, Santesteban H, Pascual I, Morales F, Irigoyen JJ (2015) Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agric Water Manag 159:155–164CrossRefGoogle Scholar
  35. Kizildeniz T, Irigoyen JJ, Pascual I, Morales F (2018a) Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015). Agric Water Manag 202:220–230CrossRefGoogle Scholar
  36. Kizildeniz T, Pascual I, Irigoyen JJ, Morales F (2018b) Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Tempranillo. Yield and must quality in three consecutive growing seasons (2013–2015). Agric Water Manag 202:299–310CrossRefGoogle Scholar
  37. Kliewer WM, Dokoozlian NK (2005) Leaf areal crop weight ratios of grapevines: Influence on fruit composition and wine quality. Am J Enol Vitic 56:170–181Google Scholar
  38. Koufos G, Mavromatis T, Koundouras S, Fyllas NM, Jones GV (2014) Viticulture-climate relationships in Greece: the impacts of recent climate trends on harvest date variation. Int J Climatol 34:1445–1459CrossRefGoogle Scholar
  39. Lakso AN, Kliewer WM (1975) The influence of temperature on malic acid metabolism in grape berries. Plant Physiol 56:370–372CrossRefGoogle Scholar
  40. Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environ 14:729–739CrossRefGoogle Scholar
  41. Lopez-Bustins J-A, Pla E, Nadal M, de Herralde F, Savé R (2014) Global change and viticulture in the Mediterranean region: a case of study in north-eastern Spain. Span J Agric Res 12:78–88CrossRefGoogle Scholar
  42. Martínez de Toda F, Sancha JC, Balda P (2013) Reducing the sugar and pH of the grape (Vitis vinifera L. cvs. Grenache and Tempranillo) through a single shoot trimming. S Afr J Enol Vitic 34:246–251Google Scholar
  43. Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E (2014) Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant Cell Physiol 55:1925–1936CrossRefGoogle Scholar
  44. Martínez-Lüscher J, Morales F, Sánchez-Díaz M, Delrot S, Aguirreolea J, Gomès E, Pascual I (2015) Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Sci 236:168–176CrossRefGoogle Scholar
  45. Martínez-Lüscher J, Kizildeniz T, Vučetić V, Dai Z, Luedeling E, van Leeuwen C, Gomès E, Pascual I, Irigoyen JJ, Morales F, Delrot S (2016a) Sensitivity of grapevine phenology to water availability, temperature and CO2 concentration. Front Environ Sci 4:48CrossRefGoogle Scholar
  46. Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, Gomès E (2016b) Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation. Aust J Grape Wine Res 22:87–95CrossRefGoogle Scholar
  47. Maurer C, Hammerl C, Koch E, Hammerl T, Pokorny E (2011) Extreme grape harvest data of Austria, Switzerland and France from A.D. 1523 to 2007 compared to corresponding instrumental/reconstructed temperature data and various documentary sources. Theor Appl Climatol 106:55–68CrossRefGoogle Scholar
  48. Medrano H, Escalona JM, Cifre J, Bota J, Flexas J (2003) A ten-year study on the physiology of two Spanish grapevine cultivars under field conditions: effects of water availability from leaf photosynthesis to grape yield and quality. Funct Plant Biol 30:607–619CrossRefGoogle Scholar
  49. Molero G, Aranjuelo I, Teixidor P, Araus JL, Nogués S (2011) Measurement of 13C and 15N isotope labeling by gas chromatography/combustion/isotope ratio mass spectrometry to study amino acid fluxes in a plant-microbe symbiotic association. Rapid Commun Mass Sp 25:599–607CrossRefGoogle Scholar
  50. Morales F, Pascual I, Sánchez-Díaz M, Aguirreolea J, Irigoyen JJ, Goicoechea N, Antolín MC, Oyarzun M, Urdiain A (2014) Methodological advances: using greenhouses to simulate climate change scenarios. Plant Sci 226:30–40CrossRefGoogle Scholar
  51. Morales F, Antolín MC, Aranjuelo I, Goicoechea N, Pascual I (2016) From vineyards to controlled environments in grapevine research: investigating responses to climate change scenarios using fruit-bearing cuttings. Theor Exp Plant Physiol 28:171–191CrossRefGoogle Scholar
  52. Moran MA, Sadras VO, Petrie PR (2017) Late pruning and carry-over effects on phenology, yield components and berry traits in Shiraz. Aust J Grape Wine Res 23:390–398CrossRefGoogle Scholar
  53. Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945CrossRefGoogle Scholar
  54. NOAA-ESRL (2014) National Oceanic and Atmospheric Administration (NOAA)- Earth System Research Laboratory (ESRL), USA. Monthly CO2 concentration data set.
  55. Nogués S, Tcherkez G, Cornic G, Ghashghaie J (2004) Respiratory carbon metabolism following illumination in intact french bean leaves using C-13/C-12 isotope labeling. Plant Physiol 136:3245–3254CrossRefGoogle Scholar
  56. Ollat N, Gaudillêre J (2000) Carbon balance in developing grapevine berries. Acta Hortic 526:345–350CrossRefGoogle Scholar
  57. Pastenes C, Villalobos L, Ríos N, Reyes F, Turgeon R, Franck N (2014) Carbon partitioning to berries in water stressed grapevines: the role of active transport in leaves and fruits. Environ Exp Bot 107:154–166CrossRefGoogle Scholar
  58. Petrie PR, Sadras VO (2008) Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Aust J Grape Wine Res 14:33–45CrossRefGoogle Scholar
  59. Petrie PR, Brooke SJ, Moran MA, Sadras VO (2017) Pruning after budburst to delay and spread grape maturity. Aust J Grape Wine Res 23:378–389CrossRefGoogle Scholar
  60. Ribéreau-Gayon J, Stonestreet E (1965) Le dosage des anthocyanes dans le vin rouge. Bulletin de la Societé de Chimie 9:2649–2652Google Scholar
  61. Rienth M, Torregrosa L, Sarah G, Ardisson M, Brillouet J-M, Romieu C (2016) Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biol 16:1–23CrossRefGoogle Scholar
  62. Roby G, Harbertson JF, Adams DA, Matthews MA (2004) Berry size and vine water deficits as factors in winegrape composition: anthocyanins and tannins. Aust J Grape Wine Res 10:100–107CrossRefGoogle Scholar
  63. Sadras VO, Moran MA (2012) Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust J Grape Wine Res 18:115–122CrossRefGoogle Scholar
  64. Sadras VO, Stevens R, Pech J, Taylor E, Nicholas P, McCarthy M (2007) Quantifying phenotypic plasticity of berry traits using an allometric-type approach: a case study on anthocyanins and sugars in berries of Cabernet Sauvignon. Aust J Grape Wine Res 13:72–80CrossRefGoogle Scholar
  65. Sadras VO, Moran MA, Bonada M (2013) Effects of elevated temperature in grapevine. I Berry sensory traits. Aust J Grape Wine Res 19:95–106CrossRefGoogle Scholar
  66. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2010) Effects of climate change scenarios on Tempranillo grapevine (Vitis vinifera L.) ripening: response to a combination of elevated CO2 and temperature, and moderate drought. Plant Soil 337:179–191CrossRefGoogle Scholar
  67. Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292CrossRefGoogle Scholar
  68. Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez A, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F (2015) Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J Plant Physiol 174:97–109CrossRefGoogle Scholar
  69. Shellie K (2015) Foliar reflective film and water deficit increase anthocyanin to soluble solids ratio during berry ripening in Merlot. Am J Enol Vitic 66:348–356CrossRefGoogle Scholar
  70. Spayd S, Tarara J, Mee D, Ferguson J (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am J Enol Vitic 53:171–182Google Scholar
  71. Sweetman C, Sadras VO, Hancock RD, Soole KL, Ford CM (2014) Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J Exp Bot 65:5975–5988CrossRefGoogle Scholar
  72. Tardáguila J, Diago MP, Martínez de Toda F, Poni S, Vilanova M (2008) Effects of timing of leaf removal on yield, berry maturity, wine composition, and sensory properties of Grenache wines grown in dry farmed conditions. J Int Sci Vigne Vin 42:221–229Google Scholar
  73. Tomasi D, Jones GV, Giust M, Lovat L, Gaiotti F (2011) Grapevine phenology and climate change: relationships and trends in the Veneto region of Italy for 1964–2009. Am J Enol Vitic 62:329–339CrossRefGoogle Scholar
  74. Torregrosa L, Bigard A, Doligez A, Lecourieux D, Rienth M, Luchaire N, Pieri P, Chatbanyong R, Shahood R, Farnos M, Roux C, Adiveze A, Pillet J, Sire Y, Zumstein E, Veyret M, Le Cunff L, Lecourieux F, Saurin N, Muller B, Ojeda H, Houel C, Péros J-P, This P, Pellegrino A, Romieu C (2017) Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming. OENO One 51:155–165CrossRefGoogle Scholar
  75. Torres N, Goicoechea N, Morales F, Antolín MC (2016) Berry quality and antioxidant properties in Vitis vinifera cv. Tempranillo as affected by clonal variability, mycorrhizal inoculation and temperature. Crop Pasture Sci 67:961–977CrossRefGoogle Scholar
  76. Xu Z, Shimizu H, Yagasaki Y, Ito S, Zheng Y, Zhou G (2013) Interactive effects of elevated CO2, drought, and warming on plants. J Plant Growth Regul 32:692–707CrossRefGoogle Scholar
  77. Yamane T, Jeong ST, Goto-Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54–59Google Scholar
  78. Zhang XY, Wang XL, Wang XF, Xia GH, Pan QH, Fan RC, Wu FQ, Yu XC, Zhang DP (2006) A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. Plant Physiol 142:220–232CrossRefGoogle Scholar
  79. Zhang PZ, Wu XW, Needs S, Liu D, Fuentes S, Howell K (2017) The influence of apical and basal defoliation on the canopy structure and biochemical composition of Vitis vinifera cv. Shiraz grapes and wine. Front Chem 5:48CrossRefGoogle Scholar
  80. Zheng W, del Galdo V, García J, Balda P, Martínez de Toda F (2017) Use of minimal pruning to delay fruit maturity and improve berry composition under climate change. Am J Enol Vitic 68:136–140CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Carolina Salazar-Parra
    • 1
    • 5
  • Iker Aranjuelo
    • 2
  • Inmaculada Pascual
    • 1
  • Jone Aguirreolea
    • 1
  • Manuel Sánchez-Díaz
    • 1
  • Juan José Irigoyen
    • 1
  • José Luis Araus
    • 3
  • Fermín Morales
    • 2
    • 4
  1. 1.Grupo de Fisiología del Estrés en Plantas (Dpto. de Biología Ambiental), Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño. Facultades de Ciencias y FarmaciaUniversidad de NavarraPamplonaSpain
  2. 2.Instituto de Agrobiotecnología (IdAB)Universidad Pública de Navarra-CSIC-Gobierno de NavarraMutilva BajaSpain
  3. 3.Section of Plant PhysiologyUniversity of Barcelona, Barcelona and AGROTECNIO (Center for Research in Agrotechnology)LleidaSpain
  4. 4.Dpto. de Nutrición Vegetal, Estación Experimental de Aula Dei (EEAD)Consejo Superior de Investigaciones Científicas (CSIC)ZaragozaSpain
  5. 5.Instituto de Investigaciones AgropecuariasINIA La PlatinaSantiagoChile

Personalised recommendations