Advertisement

Photosynthesis Research

, Volume 139, Issue 1–3, pp 401–411 | Cite as

Comparative analysis of strategies to prepare electron sinks in aquatic photoautotrophs

  • Ginga Shimakawa
  • Akio Murakami
  • Kyosuke Niwa
  • Yusuke Matsuda
  • Ayumi Wada
  • Chikahiro MiyakeEmail author
Original Article
  • 263 Downloads

Abstract

While subject to illumination, photosystem I (PSI) has the potential to produce reactive oxygen species (ROS) that can cause photo-oxidative damage in oxygenic photoautotrophs. The reaction center chlorophyll in PSI (P700) is kept oxidized in excess light conditions to limit over-excitation of PSI and alleviate the production of ROS. Oxidation of P700 requires a sufficient electron sink for PSI, which is responsible for flavodiiron proteins (FLV) safely dissipating electrons to O2 in cyanobacteria, green algae, and land plants except for angiosperms during short-pulse light (SP) illumination under which photosynthesis and photorespiration do not occur. This fact implies that O2 usage is essential for P700 oxidation but also raises the question why angiosperms lost FLV. Here, we first found that aquatic photoautotrophs in red plastid lineage, in which no gene for FLV has been found, could keep P700 oxidized during SP illumination alleviating the photo-oxidative damage in PSI even without O2 usage. We comprehensively assessed P700 oxidation during SP illumination in the presence and absence of O2 in cyanobacteria (Cyanophyta), green algae (Chlorophyta), angiosperms (Streptophyta), red algae (Rhodophyta), and secondary algae (Cryptophyta, Haptophyta, and Heterokontophyta). A variety of dependencies of P700 oxidation on O2 among these photoautotrophs clearly suggest that O2 usage and FLV are not universally required to oxidize P700 for protecting PSI against ROS damage. Our results expand the understanding of the diverse strategies taken by oxygenic photoautotrophs to oxidize P700 and mitigate the risks of ROS.

Keywords

Reactive oxygen species P700 oxidation Photosystem I Seaweeds 

Notes

Acknowledgements

The authors thank Prof. Yuichiro Takahashi (Okayama University) for supplying the culture of Chlamydomonas reinhardtii and Editage (http://www.editage.jp) for providing English corrections.

Author contributions

CM conceived the original screening and research plans; CM supervised the experiments; GS performed most of the experiments; AM, KN, YM, and AW provided technical assistance to GS; CM and GS designed the experiments and analyzed the data; CM and GS conceived the project and wrote the manuscript.

Funding

This work was supported by the Japan Society for the Promotion of Science (JSPS; Grant No. 26450079 to C.M.) and the Core Research for Evolutional Science and Technology (CREST) division of the Japan Science and Technology Agency (Grant No. AL65D21010 to C.M.). G.S. was supported as a JSPS research fellow (Grant No. 16J03443).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

11120_2018_522_MOESM1_ESM.pdf (392 kb)
Supplementary material 1 (PDF 391 KB)
11120_2018_522_MOESM2_ESM.pdf (224 kb)
Supplemental Fig. S1. Residual total oxidizable P700 after rSP illumination (20,000 μmol photons m−2 s−1, 1 s, every 10 s, for 30 min) in N2 gas presence in the cyanobacterium (Synechococcus elongatus PCC 7942), in the green algae (Chlamydomonas reinhardtii, Ulva pertusa and Codium fragile), in the angiosperms (Ipomoea nil, Nymphaea tetragona, Magnolia kobus and Zostera marina), in the red algae (Pyropia yezoensis, Porphyridium aerugineum, Porphyridium purpureum, Chondrus ocellatus, Chondrus giganteus, Callophyllis japonica and Grateloupia lanceolata), in the unicellular secondary algae (Chroomonas placoidea, Isochrysis galbana, Nannochloropsis oceanica, Vischeria punctata and Phaeodactylum tricornutum) and in the brown algae (Ecklonia cava, Dictyota dichotoma, Sargassum horneri and Undaria pinnatifida). Bars represent mean ± SD (n = 3). (PDF 224 KB)

References

  1. Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, Battchikova N, Cournac L, Aro EM (2013) Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc Natl Acad Sci USA 110:4111–4116CrossRefGoogle Scholar
  2. Allahverdiyeva Y, Isojarvi J, Zhang P, Aro EM (2015) Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. Life 5:716–743CrossRefGoogle Scholar
  3. Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates1, 2. J Phycol 4:1–4CrossRefGoogle Scholar
  4. Anderson JM (1992) Cytochrome b 6 f complex: dynamic molecular organization, function and acclimation. Photosynth Res 34:341–357CrossRefGoogle Scholar
  5. Appel J, Phunpruch S, Steinmuller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173:333–338CrossRefGoogle Scholar
  6. Bailleul B, Berne N, Murik O, Petroutsos D, Prihoda J, Tanaka A, Villanova V, Bligny R, Flori S, Falconet D, Krieger-Liszkay A, Santabarbara S, Rappaport F, Joliot P, Tirichine L, Falkowski PG, Cardol P, Bowler C, Finazzi G (2015) Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524:366–369CrossRefGoogle Scholar
  7. Bidwell RGS, McLachlan J (1985) Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J Exp Mar Biol Ecol 86:15–46CrossRefGoogle Scholar
  8. Chaux F, Burlacot A, Mekhalfi M, Auroy P, Blangy S, Richaud P, Peltier G (2017) Flavodiiron proteins promote fast and transient O2 photoreduction in Chlamydomonas. Plant Physiol 174:1825–1836CrossRefGoogle Scholar
  9. Curien G, Flori S, Villanova V, Magneschi L, Giustini C, Forti G, Matringe M, Petroutsos D, Kuntz M, Finazzi G (2016) The water to water cycles in microalgae. Plant Cell Physiol 57:1354–1363Google Scholar
  10. Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105:17199–17204CrossRefGoogle Scholar
  11. Ermakova M, Huokko T, Richaud P, Bersanini L, Howe CJ, Lea-Smith DJ, Peltier G, Allahverdiyeva Y (2016) Distinguishing the roles of thylakoid respiratory terminal oxidases in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 171:1307–1319Google Scholar
  12. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360CrossRefGoogle Scholar
  13. Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83:117–133CrossRefGoogle Scholar
  14. Flori S, Jouneau P-H, Bailleul B, Gallet B, Estrozi LF, Moriscot C, Bastien O, Eicke S, Schober A, Bártulos CR, Maréchal E, Kroth PG, Petroutsos D, Zeeman S, Breyton C, Schoehn G, Falconet D, Finazzi G (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 8:15885CrossRefGoogle Scholar
  15. Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388CrossRefGoogle Scholar
  16. Freshwater DW, Fredericq S, Butler BS, Hommersand MH, Chase MW (1994) A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proc Natl Acad Sci USA 91:7281–7285CrossRefGoogle Scholar
  17. Gerotto C, Alboresi A, Meneghesso A, Jokel M, Suorsa M, Aro E-M, Morosinotto T (2016) Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens. Proc Natl Acad Sci USA 113:12322–12327CrossRefGoogle Scholar
  18. Greene RM, Gerard VA (1990) Effects of high-frequency light fluctuations on growth and photoacclimation of the red alga Chondrus crispus. Mar Biol 105:337–344CrossRefGoogle Scholar
  19. Grimme LH, Boardman NK (1972) Photochemical activities of a particle fraction P1 obtained from the green alga Chlorella fusca. Biochem Biophys Res Commun 49:1617–1623CrossRefGoogle Scholar
  20. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Springer US, Boston, pp 29–60CrossRefGoogle Scholar
  21. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran. Can J Microbiol 8:229–239CrossRefGoogle Scholar
  22. Hagemann M, Fernie AR, Espie GS, Kern R, Eisenhut M, Reumann S, Bauwe H, Weber APM (2013) Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biol 15:639–647CrossRefGoogle Scholar
  23. Hanawa H, Ishizaki K, Nohira K, Takagi D, Shimakawa G, Sejima T, Shaku K, Makino A, Miyake C (2017) Land plants drive photorespiration as higher electron-sink: comparative study of post-illumination transient O2-uptake rates from liverworts to angiosperms through ferns and gymnosperms. Physiol Plant 161:138–149CrossRefGoogle Scholar
  24. Hayashi R, Shimakawa G, Shaku K, Shimizu S, Akimoto S, Yamamoto H, Amako K, Sugimoto T, Tamoi M, Makino A, Miyake C (2014) O2-dependent large electron flow functioned as an electron sink, replacing the steady-state electron flux in photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803, but not in the cyanobacterium Synechococcus sp. PCC 7942. Biosci Biotechnol Biochem 78:384–393CrossRefGoogle Scholar
  25. Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100:1621–1626CrossRefGoogle Scholar
  26. Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13:230–235CrossRefGoogle Scholar
  27. Ilík P, Pavlovič A, Kouřil R, Alboresi A, Morosinotto T, Allahverdiyeva Y, Aro E-M, Yamamoto H, Shikanai T (2017) Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. New Phytol 214:967–972CrossRefGoogle Scholar
  28. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194CrossRefGoogle Scholar
  29. Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268CrossRefGoogle Scholar
  30. Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560CrossRefGoogle Scholar
  31. Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32CrossRefGoogle Scholar
  32. Krieger-Liszkay A, Feilke K (2016) The dual role of the plastid terminal oxidase PTOX: Between a protective and a pro-oxidant function. Front Plant Sci 6:1147CrossRefGoogle Scholar
  33. Massey V, Strickland S, Mayhew SG, Howell LG, Engel PC, Matthews RG, Schuman M, Sullivan PA (1969) The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochem Biophys Res Commun 36:891–897CrossRefGoogle Scholar
  34. Mehler AH (1951) Studies on reactions of illuminated chloroplasts. Arch Biochem Biophys 33:65–77CrossRefGoogle Scholar
  35. Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–553Google Scholar
  36. Miyake C, Schreiber U, Hormann H, Sano S, Kozi A (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39:821–829CrossRefGoogle Scholar
  37. Mosebach L, Heilmann C, Mutoh R, Gäbelein P, Steinbeck J, Happe T, Ikegami T, Hanke G, Kurisu G, Hippler M (2017) Association of Ferredoxin: NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii. Photosynth Res 134:291–306CrossRefGoogle Scholar
  38. Mubarakshina MM, Ivanov BN, Naydov IA, Hillier W, Badger MR, Krieger-Liszkay A (2010) Production and diffusion of chloroplastic H2O2 and its implication to signalling. J Exp Bot 61:3577–3587CrossRefGoogle Scholar
  39. Nandha B, Finazzi G, Joliot P, Hald S, Johnson GN (2007) The role of PGR5 in the redox poising of photosynthetic electron transport. Biochim Biophys Acta Bioenerg 1767:1252–1259CrossRefGoogle Scholar
  40. Nishio JN, Whitmarsh J (1993) Dissipation of the proton electrochemical potential in intact chloroplasts II. The pH gradient monitored by cytochrome f reduction kinetics. Plant Physiol 101:89–96CrossRefGoogle Scholar
  41. Noridomi M, Nakamura S, Tsuyama M, Futamura N, Vladkova R (2017) Opposite domination of cyclic and pseudocyclic electron flows in short-illuminated dark-adapted leaves of angiosperms and gymnosperms. Photosynth Res 134:149–164CrossRefGoogle Scholar
  42. Rademacher N, Kern R, Fujiwara T, Mettler-Altmann T, Miyagishima S, Hagemann M, Eisenhut M, Weber APM (2016) Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions. J Exp Bot 67:3165–3175CrossRefGoogle Scholar
  43. Rippka R, Waterbury JB, Stanier RY (1981) Isolation and purification of cyanobacteria: Some general principles. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer Berlin Heidelberg, Berlin, pp 212–220CrossRefGoogle Scholar
  44. Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91CrossRefGoogle Scholar
  45. Rott M, Martins NF, Thiele W, Lein W, Bock R, Kramer DM, Schöttler MA (2011) ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen. Plant Cell 23:304–321CrossRefGoogle Scholar
  46. Schmitt F, Kreslavski VD, Zharmukhamedov SK, Friedrich T, Renger G, Los DA, Kuznetsov VV, Allakhverdiev SI (2015) The multiple roles of various reactive oxygen species (ROS) in photosynthetic organisms. In Photosynthesis, Allakhverdiev SI (ed).  https://doi.org/10.1002/9781119084150.ch1
  47. Schöttler MA, Tóth SZ, Boulouis A, Kahlau S (2015) Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b 6 f complex. J Exp Bot 66:2373–2400CrossRefGoogle Scholar
  48. Schreiber U, Klughammer C (2008) Saturation pulse method for assessment of energy conversion in PSI. PAM Appl Notes 1:11–14Google Scholar
  49. Sejima T, Takagi D, Fukayama H, Makino A, Miyake C (2014) Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves. Plant Cell Physiol 55:1184–1193CrossRefGoogle Scholar
  50. Shaku K, Shimakawa G, Hashiguchi M, Miyake C (2016) Reduction-induced suppression of electron flow (RISE) in the photosynthetic electron transport system of Synechococcus elongatus PCC 7942. Plant Cell Physiol 57:1443–1453Google Scholar
  51. Shimakawa G, Miyake C (2018) Respiratory terminal oxidases alleviate photo-oxidative damage in photosystem I during repetitive short-pulse illumination in Synechocystis sp. PCC 6803. Photosynth Res.  https://doi.org/10.1007/s11120-018-0495-y Google Scholar
  52. Shimakawa G, Shaku K, Nishi A, Hayashi R, Yamamoto H, Sakamoto K, Makino A, Miyake C (2015) FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions. Plant Physiol 167:472–480CrossRefGoogle Scholar
  53. Shimakawa G, Shaku K, Miyake C (2016a) Oxidation of P700 in photosystem I is essential for the growth of cyanobacteria. Plant Physiol 172:1443–1450CrossRefGoogle Scholar
  54. Shimakawa G, Akimoto S, Ueno Y, Wada A, Shaku K, Takahashi Y, Miyake C (2016b) Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis. Photosynth Res 130:293–305CrossRefGoogle Scholar
  55. Shimakawa G, Ishizaki K, Tsukamoto S, Tanaka M, Sejima T, Miyake C (2017a) The liverwort, Marchantia, drives alternative electron flow using a flavodiiron protein to protect PSI. Plant Physiol 173:1636–1647CrossRefGoogle Scholar
  56. Shimakawa G, Matsuda Y, Nakajima K, Tamoi M, Shigeoka S, Miyake C (2017b) Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis. Sci Rep 7:41022CrossRefGoogle Scholar
  57. Stiehl HH, Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Zeitschrift für Naturforschung B 24:1588CrossRefGoogle Scholar
  58. Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardi. Proc Natl Acad Sci USA 46:83–91CrossRefGoogle Scholar
  59. Takagi D, Ishizaki K, Hanawa H, Mabuchi T, Shimakawa G, Yamamoto H, Miyake C (2017) Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant 161:56–74CrossRefGoogle Scholar
  60. Vicente JB, Carrondo MA, Teixeira M, Frazao C (2008) Structural studies on flavodiiron proteins. Methods Enzymol 437:3–19CrossRefGoogle Scholar
  61. Wing SR, Patterson MR (1993) Effects of wave-induced lightflecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Mar Biol 116:519–525CrossRefGoogle Scholar
  62. Yamamoto H, Takahashi S, Badger MR, Shikanai T (2016) Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nat Plants 2:16012CrossRefGoogle Scholar
  63. Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204CrossRefGoogle Scholar
  64. Zhang P, Allahverdiyeva Y, Eisenhut M, Aro EM (2009) Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS ONE 4:e5331CrossRefGoogle Scholar
  65. Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015a) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463CrossRefGoogle Scholar
  66. Zivcak M, Brestic M, Kunderlikova K, Olsovska K, Allakhverdiev SI (2015b) Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: does activity of photosystem I play any role in OJIP rise? J Photochem Photobiol B: Biol 152:318–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural ScienceKobe UniversityKobeJapan
  2. 2.Kobe University Research Center for Inland SeasAwajiJapan
  3. 3.Fisheries Technology InstituteHyogo Prefectural Technology Center for Agriculture, Forestry and FisheriesAkashiJapan
  4. 4.Department of Marine Biosciences, Faculty of Marine Life ScienceTokyo University of Marine Science and TechnologyTokyoJapan
  5. 5.Research Center for the Development of Intelligent Self-Organized Biomaterials, Research Center for Environmental Bioscience, Department of BioscienceKwansei-Gakuin UniversitySandaJapan
  6. 6.Core Research for Environmental Science and TechnologyJapan Science and Technology AgencyTokyoJapan

Personalised recommendations