Advertisement

Photosynthesis Research

, Volume 139, Issue 1–3, pp 155–161 | Cite as

Regulation of excitation energy in Nannochloropsis photosystem II

  • Makio YokonoEmail author
  • Ikumi Umetani
  • Atushi Takabayashi
  • Seiji Akimoto
  • Ayumi Tanaka
Original Article
  • 292 Downloads

Abstract

Recently, we isolated a complex consisting of photosystem II (PSII) and light-harvesting complexes (LHCs) from Nannochloropsis granulata (Umetani et al. Photosynth Res 136:49–61, 2017). This complex contained stress-related protein, Lhcx, as a major component of LHC (Protein ID is Naga_100173g12.1), suggesting that non-photochemical quenching activities may be taking place in the PSII-LHC complex. In this study, we examined the energy transfer dynamics in the isolated LHCs and PSII-LHC complexes, and found substantial quenching capacity. In addition, the LHCs contained low-energy chlorophylls with fluorescence maxima at approximately 710 nm, which may enhance the quenching efficiency in the PSII-LHC. Delayed fluorescence analysis suggested that there was an approximately 50% reduction in energy trapping at the PSII reaction center in the PSII-LHC supercomplex under low-pH condition compared to neutral pH condition. Enhanced quenching may confer a survival advantage in the shallow-water habitat of Nannochloropsis.

Keywords

Nannochloropsis PSII NPQ LHCII Diatom 

Abbreviations

PSII

Photosystem II

LHC

Light-harvesting complex

CN-PAGE

Clear-native polyacrylamide gel electrophoresis

FDAS

Fluorescence decay-associated spectra

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (KAKENHI Grant No. 16H06553 to S. Akimoto, grant-in-aid for Young Scientists 23770035 to A. Takabayashi, and Scientific Research Grant 24370017 to A. Tanaka) and the University College of Southeast Norway. We thank Shelley Robison, PhD, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

M.Y. is employee of NIPPON FLOUR MILLS Co.,Ltd.

Supplementary material

11120_2018_510_MOESM1_ESM.pdf (174 kb)
Supplementary material 1 (PDF 173 KB)
11120_2018_510_MOESM2_ESM.nb (55 kb)
Supplementary material 2 (NB 54 KB)
11120_2018_510_MOESM3_ESM.pdf (205 kb)
Supplementary material 3 (PDF 205 KB)
11120_2018_510_MOESM4_ESM.pdf (215 kb)
Supplementary material 4 (PDF 214 KB)
11120_2018_510_MOESM5_ESM.pdf (293 kb)
Supplementary material 5 (PDF 293 KB)
11120_2018_510_MOESM6_ESM.nb (86 kb)
Supplementary material 6 (NB 86 KB)
11120_2018_510_MOESM7_ESM.nb (87 kb)
Supplementary material 7 (NB 86 KB)
11120_2018_510_MOESM8_ESM.pdf (242 kb)
Supplementary material 8 (PDF 241 KB)
11120_2018_510_MOESM9_ESM.nb (54 kb)
Supplementary material 9 (NB 54 KB)

References

  1. Akimoto S, Teshigahara A, Yokono M, Mimuro M, Nagao R, Tomo T (2014) Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. Biochim Biophys Acta 1837:1514–1521.  https://doi.org/10.1016/j.bbabio.2014.02.002 CrossRefGoogle Scholar
  2. Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ (2008) Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth Res 95:169–174CrossRefGoogle Scholar
  3. Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837(6):802–810CrossRefGoogle Scholar
  4. Chmeliov J, Gelzinis A, Songaila E, Augulis R, Duffy CD, Ruban AV, Valkunas L (2016) The nature of self-regulation in photosynthetic light-harvesting antenna. Nat Plants 2:16045CrossRefGoogle Scholar
  5. Chukhutsina VU, Fristedt R, Morosinotto T, Croce R (2017) Photoprotection strategies of the alga Nannochloropsis gaditana. Biochim Biophys Acta 1858(7):544–552.  https://doi.org/10.1016/j.bbabio.2017.05.003 CrossRefGoogle Scholar
  6. Daugbjerg N, Andersen RA (1997) A molecular phylogeny of the heterokont algae based on analyses of chloroplastencoded rbcL sequence data1. J Phycol 33:1031–1041CrossRefGoogle Scholar
  7. Fisher T, Minnaard J, Dubinsky Z (1996) Photoacclimation in the marine alga Nannochloropsis sp.(Eustigmatophyte): a kinetic study. J Plankton Res 18:1797–1818CrossRefGoogle Scholar
  8. Gelzinis A, Chmeliov J, Ruban AV, Valkunas L (2017) Can red-emitting state be responsible for fluorescence quenching in LHCII aggregates? Photosynth Res 135:275–284CrossRefGoogle Scholar
  9. Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochim Biophys Acta 1817:1044–1052.  https://doi.org/10.1016/j.bbabio.2012.03.008 CrossRefGoogle Scholar
  10. Ikeda Y et al (2013) Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. Biochim Biophys Acta 1827:529–539CrossRefGoogle Scholar
  11. Jennings RC, Zucchelli G, Finzi L, Garlaschi FM (1996) Spectral heterogeneity and energy equilibration in higher plant photosystems. In: light as an energy source and information carrier in plant physiology. Springer, New York, pp 65–74CrossRefGoogle Scholar
  12. Jordan P, Fromme P, Witt H, Klukas O, Saenger W, Krau N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917CrossRefGoogle Scholar
  13. Kell A et al (2014) Charge-transfer character of the low-energy Chl a Qy absorption band in aggregated light harvesting complexes II. J Phys Chem B 118:6086–6091.  https://doi.org/10.1021/jp501735p CrossRefGoogle Scholar
  14. Khoroshyy P, Bína D, Gardian Z, Litvín R, Alster J, Pšenčík J (2018) Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. Photosynth Res 135(1–3):213–225CrossRefGoogle Scholar
  15. Kowalczyk N, Rappaport F, Boyen C, Wollman F-A, Collén J, Joliot P (2013) Photosynthesis in Chondrus crispus: the contribution of energy spill-over in the regulation of excitonic flux. Biochim Biophys Acta 1827:834–842.  https://doi.org/10.1016/j.bbabio.2013.04.004 CrossRefGoogle Scholar
  16. Krienitz L, Hepperle D, Stich H-B, Weiler W (2000) Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39:219–227CrossRefGoogle Scholar
  17. Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem I super-complex at 2.8 Å resolution. Elife 4:e07433CrossRefGoogle Scholar
  18. Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C, Holzwarth AR (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta 1787:1189–1197CrossRefGoogle Scholar
  19. Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta 1767:327–334CrossRefGoogle Scholar
  20. Mimuro M, Yokono M, Akimoto S (2010) Variations in photosystem i properties in the primordial Cyanobacterium Gloeobacter violaceus PCC 7421. Photochem Photobiol 86:62–69CrossRefGoogle Scholar
  21. Nagao R, Yokono M, Akimoto S, Tomo T (2013) High excitation energy quenching in Fucoxanthin chlorophyll A/C-binding protein complexes from the diatom Chaetoceros gracilis. J Phys Chem B 117:6888 – 6895CrossRefGoogle Scholar
  22. Nagao R, Yokono M, Teshigahara A, Akimoto S, Tomo T (2014a) Light-harvesting ability of the Fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the diatom Chaetoceros gracilis as Revealed by Picosecond Time-Resolved Fluorescence Spectroscopy. J Phys Chem B 118:5093–5100CrossRefGoogle Scholar
  23. Nagao R, Yokono M, Tomo T, Akimoto S (2014b) Control mechanism of excitation energy transfer in a complex consisting of photosystem II and fucoxanthin chlorophyll a/c binding protein. J Phys Chem Lett 5:2983–2987CrossRefGoogle Scholar
  24. O’Connor D, Phillips D (1984) Time-correlated single photon counting. Academic, LondonGoogle Scholar
  25. Owens TG, Wold ER (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum I. Isolation and characterization of pigment-protein complexes. Plant Physiol 80:732–738CrossRefGoogle Scholar
  26. Qin X, Suga M, Kuang T, Shen J-R (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995.  https://doi.org/10.1126/science.aab0214 CrossRefGoogle Scholar
  27. Sandnes J, Källqvist T, Wenner D, Gislerød HR (2005) Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. J Appl Phycol 17:515–525CrossRefGoogle Scholar
  28. Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102(10):6026–6032CrossRefGoogle Scholar
  29. Sonneveld A, Rademaker H, Duysens LN (1980) Microsecond delayed fluorescence of photosystem II of photosynthesis in various algae: emission spectra and uphill energy transfer. FEBS Lett 113:323–327CrossRefGoogle Scholar
  30. Sukenik A, Livne A, Apt KE, Grossman AR (2000) Characterization of a gene encoding the LIGHT harvesting violaxanthin chlorophyll protein of nannochloropsis sp.(Eustigmatophyceae). J Phycol 36:563–570CrossRefGoogle Scholar
  31. Suzuki Y, Takahashi M (1995) Growth responses of several diatom species isolated from various environments to temperature. J Phycol 31:880–888CrossRefGoogle Scholar
  32. Tikkanen M, Grieco M, Kangasjärvi S, Aro E-M (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol 152:723–735CrossRefGoogle Scholar
  33. Ueno Y, Aikawa S, Kondo A, Akimoto S (2016) Energy transfer in Cyanobacteria and Red Algae: confirmation of spillover in intact megacomplexes of phycobilisome and both photosystems. J Phys Chem Lett 7:3567–3571CrossRefGoogle Scholar
  34. Umetani I, Kunugi M, Yokono M, Takabayashi A, Tanaka A (2017) Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata. Photosynth Res 136:49–61CrossRefGoogle Scholar
  35. Walsh P, Legendre L (1983) Photosynthesis of natural phytoplankton under high frequency light fluctuations simulating those induced by sea surface waves. Limnol Oceanogr 28:688–697CrossRefGoogle Scholar
  36. Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between Photosystem II and Photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807:847–853CrossRefGoogle Scholar
  37. Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta 1817:754–759.  https://doi.org/10.1016/j.bbabio.2012.02.009 CrossRefGoogle Scholar
  38. Yokono M, Nagao R, Tomo T, Akimoto S (2015a) Regulation of excitation energy transfer in diatom PSII dimer: how does it change the destination of excitation energy? Biochim Biophys Acta 1847:1274–1282.  https://doi.org/10.1016/j.bbabio.2015.07.006 CrossRefGoogle Scholar
  39. Yokono M, Takabayashi A, Akimoto S, Tanaka A (2015b) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 6:6675.  https://doi.org/10.1038/ncomms7675 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Innovation CenterNippon Flour Mills Co., Ltd.AtsugiJapan
  2. 2.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  3. 3.Department of Natural Sciences and Environmental HealthUniversity College of Southeast NorwayNorway
  4. 4.Graduate School of ScienceKobe UniversityKobeJapan

Personalised recommendations