Skip to main content
Log in

Toward Escherichia coli bacteria machine for water oxidation

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Nature uses a Mn oxide-based catalyst for water oxidation in plants, algae, and cyanobacteria. Mn oxides are among major candidates to be used as water-oxidizing catalysts. Herein, we used two straightforward and promising methods to form Escherichia coli bacteria/Mn oxide compounds. In one of the methods, the bacteria template was intact after the reaction. The catalysts were characterized by X-ray photoelectron spectroscopy, visible spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, Raman spectroscopy, and X-ray diffraction spectrometry. Electrochemical properties of the catalysts were studied, and attributed redox potentials were assigned. The water oxidation of the compounds was examined under electrochemical condition. Linear sweep voltammetry showed that the onsets of water oxidation in our experimental condition for bacteria and Escherichia coli bacteria/Mn oxide were 1.68 and 1.56 V versus the normal hydrogen electrode (NHE), respectively. Thus, the presence of Mn oxide in the catalyst significantly decreased (~ 120 mV) the overpotential needed for water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad J, Dickerson MB, Cai Y, Jones SE, Ernst EM, Vernon JP, Haluska MS, Fang Y, Wang J, Subramanyam G, Naik RR, Sandhage KH (2008) Rapid bioenabled formation of ferroelectric BaTiO3 at room temperature from an aqueous salt solution at near neutral pH. J Am Chem Soc 130:4–5

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B: Biol 104:1–8

    Article  CAS  Google Scholar 

  • Blakemore JD, Crabtree RH, Brudvig GW (2015) Molecular catalysts for water oxidation. Chem Rev 115(23):12974–30005

    Article  CAS  PubMed  Google Scholar 

  • Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16:16–22

    Article  Google Scholar 

  • Feng L, Qiangbin W (2014) Fabrication of nano architectures templated by virus-based nanoparticles: strategies and applications‏. Small 10:230–245

    Article  Google Scholar 

  • Glikman TS, Shcheglova IS (1968) Water oxidation by Mn oxide‏. Kinet Katal 9:461–470

    CAS  Google Scholar 

  • Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans 84:2795–2806

    Article  CAS  Google Scholar 

  • Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN (2016) XPS determination of Mn oxidation states in Mn (hydr) oxides. Appl Surf Sci 366:475–485

    Article  CAS  Google Scholar 

  • Karkas MD, Verho O, Johnston VE, Akermark B (2014) Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem Rev 114:11863–12001

    Article  PubMed  Google Scholar 

  • Kim CH, Akase Z, Zhang L, Heuer AH, Newman AE, Hughes PJ (2006) The structure and ordering of ε-MnO2. J Solid State Chem 179(3):753–774

    Article  CAS  Google Scholar 

  • Kisailus D, Truong Q. Amemiya Y. Weaver JC. Morse DE (2006) Self-assembled bifunctional surface mimics an enzymatic and templating protein for the synthesis of a metal oxide semiconductor‏. Proc Natl Acad Sci U.S.A. 103:5652–5657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon KD, Refson K, Sposito G (2009) On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite. Geochim Cosmochim Acta 73:4142–4150

    Article  CAS  Google Scholar 

  • Levinson W (2008) Review of medical microbiology and immunology, 10th edn. McGraw-Hill Companies. Inc., New York

    Google Scholar 

  • Liu X, Wang F (2012) Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coord Chem Rev 256:1115–1136

    Article  CAS  Google Scholar 

  • Ma N, Dooley CJ, Kelley SO (2006) RNA-templated semiconductor nanocrystals. J Am Chem Soc 128:12598–12599

    Article  CAS  PubMed  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22:325–328

    Article  CAS  Google Scholar 

  • Najafpour MM, Rahimi F, Aro EM, Lee CH, Allakhverdiev SI (2012) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J R Soc Interface 9:2383–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafpour MM, Nemati Moghaddam A, Dau H, Zaharieva I (2014) Fragments of layered manganese oxide are the real water oxidation catalyst after transformation of molecular precursor on clay. J Am Chem Soc 136:7245–7248

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Ghobadi MZ, Sarvi B, Haghighi B (2015) An engineered polypeptide around nano-sized manganese–calcium oxide: copying plants for water oxidation. Dalton Trans 44:15271–15278

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Renger G, Hołyńska M, Moghaddam A, Aro EM, Carpentier R et al (2016) Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem Rev 116:2886–2936

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Amini M, Ashrafi M (2017a) Lessons from metal oxides to find why nature selected manganese and calcium for water oxidation. Int J Hydrog Energy 42:8539–8544

    Article  CAS  Google Scholar 

  • Najafpour MM, Moghaddam NJ, Hosseini SM, Madadkhani S, Hołyńska M, Mehrabani S, Bagheri R, Song Z (2017b) Nanolayered manganese oxides: insights from inorganic electrochemistry. Catal Sci Technol 7:3499–3510

    Article  CAS  Google Scholar 

  • Oh D, Qi J, Lu YC, Zhang Y, Shao-Horn Y, Belcher AM (2013) Biologically enhanced cathode design for improved capacity and cycle life for lithium–oxygen batteries‏. Nat Commun 4:2756

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh D, Qi J, Han B, Zhang G, Carney TJ, Ohmura J, Zhang Y, Shao-Horn Y, Belcher AM (2014) M13 virus-directed synthesis of nanostructured metal oxides for lithium–oxygen batteries‏. Nano Lett 14:4837–4845

    Article  CAS  PubMed  Google Scholar 

  • Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Jones D, Orr D, Mallapragada SK, Narasimhan B, Canfield PC, Prozorov R (2007) Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS Nano 1:228–233

    Article  CAS  PubMed  Google Scholar 

  • Ruttinger W, Dismukes GC (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem Rev 97:1–24

    Article  PubMed  Google Scholar 

  • Sakimoto KK, Wong AB, Yang P (2016) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production‏. Science 351:74–77

    Article  CAS  PubMed  Google Scholar 

  • Scholz F (2010) Electroanalytical methods. Springer, Berlin-Heidelberg, p. 359

    Book  Google Scholar 

  • Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:4998

    Article  Google Scholar 

  • Selvakumar R, Seethalakshmi N, Thavamani P, Naidu RM, Mallavarapu M (2014) Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv 4:52156–52169

    Article  CAS  Google Scholar 

  • Sharma J, Chhabra R, Andersen CS, Gothelf KV, Yan H, Liu Y (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nano scaffold. J Am Chem Soc 130:7820–7821

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Bao N, Prevelige PE, Gupta A (2010) Escherichia coli bacteria-templated synthesis of nanoporous cadmium sulfide hollow micro rods for efficient photo catalytic hydrogen production‏. J Phys Chem C 114:2551–2559

    Article  CAS  Google Scholar 

  • Simon DE, Morton RW, Gislason JJ (2004) A close look at electrolytic manganese dioxide (EMD) and the γ-MnO2 & ε-MnO2 phases using Rietveld modeling. Adv X Ray Anal 47:267–280

    CAS  Google Scholar 

  • Singh A, Spiccia L (2013) Water oxidation catalysts based on abundant 1st row transition metals. Coord Chem Rev 257:2607–2622

    Article  CAS  Google Scholar 

  • Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T et al (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543:131–135

    Article  CAS  PubMed  Google Scholar 

  • Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials: processing and thermomechanical behavior of graded metals and metal-ceramic composites. IOM Communications Ltd, London, p 168

    Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL. Belcher AM. Georgiou G. Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals‏. Chem Biol 11:1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Tolstoy VP, Gulina LB (2014) Synthesis of birnessite structure layers at the solution–air interface and the formation of microtubules from them. Langmuir 30(28):8366–8372

    Article  CAS  PubMed  Google Scholar 

  • Tseng RJ, Tsai C, Ma L, Ouyang J, Ozkan CS, Yang Y (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles‏. Nat Nanotech 1:72–77

    Article  CAS  Google Scholar 

  • Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668

    Article  CAS  PubMed  Google Scholar 

  • Yagi M, Kaneko M (2001) Molecular catalysts for water oxidation. Chem Rev 101:12974–13005

    Article  Google Scholar 

  • Yeston J (2017) Three strands ironed closely together. Science 355:143–145

    Google Scholar 

  • Zaharieva I, Chernev P, Risch M, Klingan K, Kohlhoff M, Fischer A, Dau H (2012) Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ Sci 5:7081–7089

    Article  CAS  Google Scholar 

  • Zhang C, Chen C, Dong H, Jian-Ren Shen J-R, Dau H, Zhao J (2015) A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis. Science 348:690–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Institute for Advanced Studies in Basic Sciences and Iran National Science Foundation for the financial support. The reported study was funded by grant RFBR-Iran according to the joint research Project Nos. 17-54-560012, 96003636 supported by Russian Foundation for Basic Research and by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mahdi Najafpour or Suleyman I. Allakhverdiev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2593 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafpour, M.M., Moghaddam, N.J., Hassani, L. et al. Toward Escherichia coli bacteria machine for water oxidation. Photosynth Res 136, 257–267 (2018). https://doi.org/10.1007/s11120-018-0499-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0499-7

Keywords

Navigation