Advertisement

Photosynthesis Research

, Volume 137, Issue 2, pp 161–169 | Cite as

Remembering John M. Olson (1929–2017)

  • Robert E. Blankenship
  • Daniel C. Brune
  • Jon C. Olson
Tribute
  • 166 Downloads

Abstract

Here we provide reflections of and a tribute to John M. Olson, a pioneering researcher in photosynthesis. We trace his career, which began at Wesleyan University and the University of Pennsylvania, and continued at Utrech in The Netherlands, Brookhaven National Laboratory, and Odense University in Denmark. He was the world expert on pigment organization in the green photosynthetic bacteria, and discovered and characterized the first chlorophyll-containing protein, which has come to be known as the Fenna–Matthews–Olson (FMO) protein. He also thought and wrote extensively on the origin and early evolution of photosynthesis. We include personal comments from Brian Matthews, Raymond Cox, Paolo Gerola, Beverly Pierson and Jon Olson.

Keywords

Green sulfur bacteria Chlorosome Fenna–Matthews–Olson protein FMO protein 

Supplementary material

11120_2018_489_MOESM1_ESM.pdf (140 kb)
Supplementary material 1 (PDF 140 KB)

References

  1. Bystrova MI, Mal’gosheva IN, Krasnovskii AA (1979) Molecular mechanism of self-assembly of aggregated bacteriochlorophyll c. Mol Biol 13:582–594Google Scholar
  2. Causgrove TP, Brune DC, Blankenship RE, Olson JM (1990) Fluorescence lifetimes of dimers and higher oligomers of bacteriochorophyll c from Chlorobium limicola. Photosynth Res 25:1–10CrossRefPubMedGoogle Scholar
  3. Dracheva S, Williams JC, Blankenship RE (1992) Cloning and sequencing of the FMO-protein gene from Chlorobium tepidum. In: Murata, N. (ed.) Research in photosynthesis, Vol. I, pp. 53–56, Kluwer Academic Publishers, Dordrecht.Google Scholar
  4. Engel GS, Calhoun TR, Read EL, Ahn TK, Mančal T, Cheng YC, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786CrossRefPubMedGoogle Scholar
  5. Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258:573–577CrossRefGoogle Scholar
  6. Fenna RE, Matthews BW, Olson JM, Shaw, EK (1974) Structure of a bacteriochlorophyll-protein from the green photosynthetic bacterium Chlorobium limicola: crystallographic evidence for a trimer. J Mol Biol 84:231–240CrossRefPubMedGoogle Scholar
  7. Francke C, Otte SCM, Miller M, Amesz J, Olson JM (1996) Energy transfer from carotenoid and FMO-protein in subcellular preparations from green sulfur bacteria. Spectroscopic characterization of an FMO-reaction center core complex at low temperature Photosynth Res 50:71–74CrossRefPubMedGoogle Scholar
  8. Gerola PD, Olson JM (1986) A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848:69–76CrossRefPubMedGoogle Scholar
  9. Gerola PD, Højrup P, Knudsen J, Roepstorff P, Olson JM (1988) The bacteriochlorophyll c-binding protein from chlorosomes of Chlorobium limicola f. thiosulfatophilum In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria Plenum Press, New York, pp. 43–52Google Scholar
  10. Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277CrossRefPubMedGoogle Scholar
  11. Højrup P, Gerola P, Hansen HP, Mikkelsen JM, Shahed AE, Knudsen J, Roepstorff P, Olson JM (1991) The amino acid sequence of a major protein component in the light harvesting complex of the green photosynthetic bacterium Chlorobium limicola f. thiosulfatophilum. Biochim Biophys Acta 1077:220–224CrossRefPubMedGoogle Scholar
  12. Imhoff JF, Sűling J, Petri R (1998) Phylogenetic relationships among the Chromatiaceae, their taxonomic reclassification and description of the new genera Allochromatium, Halochromatium, Isochromatium, Marichromatiurn, Thiococcus, Thiohalocapsa and Thermochromatium. Int J Syst Bacteriol 48:1129–1143CrossRefPubMedGoogle Scholar
  13. Matsuura K, Olson JM (1990) Reversible conversion of aggregated bacteriochlorophyll c to the monomeric form by 1-hexanol in chlorosomes from Chlorobium and Chloroflexus. Biochim Biophys Acta 1019:233–238CrossRefGoogle Scholar
  14. Matthews BW, Fenna RE, Bolognesi MC, Schmid MF, Olson JM (1979) Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131:259–285CrossRefPubMedGoogle Scholar
  15. Melkozernov AN, Olson JM, Li Y-F, Allen JP, Blankenship RE (1998) Orientation and excitonic interactions of the Fenna-Matthews-Olson bacteriochlorophyll a protein in membranes of the green sulfur bacterium Chlorobium tepidum. Photosynth Res 56:315–328CrossRefGoogle Scholar
  16. Miller M, Gillbro T, Olson JM (1993) Aqueous aggregates of bacteriochlorophyll c as a model for pigment organization in chlorosomes Photochem Photobiol 57:98–102CrossRefGoogle Scholar
  17. Olson JM (1967) Energy conversion by the photosynthetic apparatus: report of Symposium held 6–9 June 1966, Brookhaven Symposia on Biology, No. 19. Biology Department, Brookhaven National Laboratory, Upton, New YorkGoogle Scholar
  18. Olson JM (1970) The evolution of photosynthesis. Science 168:438–446.Google Scholar
  19. Olson JM (1978) Confused history of Chloropseudomonas ethylica 2K. Int J Syst Bacteriol 28:128–129CrossRefGoogle Scholar
  20. Olson JM (1980) Organization of chlorophyll in green photosynthetic bacteria. Biochim Biophys Acta 594:33–51Google Scholar
  21. Olson JM (1994) Reminiscence about ‘Chloropseudomonas ethylicum’ and the FMO-protein. Photosynth Res 41:3–5CrossRefPubMedGoogle Scholar
  22. Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67:61–75CrossRefGoogle Scholar
  23. Olson JM (2001) Evolution of photosynthesis (1970) reexamined thirty years later. Photosynth Res 68:95–112CrossRefPubMedGoogle Scholar
  24. Olson JM (2004) The FMO protein. Photosynth Res 80:181–187CrossRefPubMedGoogle Scholar
  25. Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386CrossRefPubMedGoogle Scholar
  26. Olson JM, Chance B (1960a) Oxidation reduction reactions in the photosynthetic bacterium Chromatium. I. Absorption spectrum changes in whole cells. Arch Biochem Biophys 88:26–39Google Scholar
  27. Olson JM, Chance B (1960b) Oxidation reduction reactions in the photosynthetic bacterium Chromatium. II. Dependence of light reactions on intensity of irradiation and quantum efficiency of cytochrome oxidation. Arch Biochem Biophys 88:40–53Google Scholar
  28. Olson JM, Cox RP (1991) Monomers, dimers, and tetramers of 4-n-propyl-5-ethyl farnesyl bacteriochlorophyll c in dichloromethane and carbon tetrachloride. Photosynth Res 30:35–43PubMedGoogle Scholar
  29. Olson JM, Hind G (eds) (1977) Chlorophyll-proteins, reaction centers, and photosynthetic membranes: report of Symposium held 7–9 June 1976. Brookhaven Symposia in Biology, No. 28. Biology Department, Brookhaven National Laboratory, Upton, New YorkGoogle Scholar
  30. Olson JM, Pedersen JP (1988) Bacteriochlorophyll c aggregates in carbon tetrachloride as models for chlorophyll organization in green photosynthetic bacteria. In: Photosynthetic light-harvesting systems H. Scheer, S. Schneider, (eds) Walter de Gruyter, Berlin, pp. 365–373Google Scholar
  31. Olson JM, Pedersen JP (1990) Bacteriochlorophyll c monomers, dimers, and higher aggregates in dichloromethane, chloroform, and carbon tetrachloride. Photosynth Res 25:25–37CrossRefPubMedGoogle Scholar
  32. Olson JM, Pierson BK (1986) Photosynthesis 3.5 thousand million years ago. Photosynth Res 9:251–260CrossRefGoogle Scholar
  33. Olson JM, Pierson BK (1987a) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108:209–248Google Scholar
  34. Olson JM, Pierson BK (1987b) Origin and evolution of photosynthetic reaction centers. Orig Life 17:419–430Google Scholar
  35. Olson JM, Romano CA (1962) A new chlorophyll from green bacteria. Biochim Biophys Acta 59:726–728CrossRefPubMedGoogle Scholar
  36. Olson JM, Duysens LNM, Kronenberg GHM (1959) Spectrofluorometry of pyridine nucleotide reactions in Chromatium. Biochim Biophys Acta 36:125–131CrossRefGoogle Scholar
  37. Olson, JM, Carroll, JW, Clayton, ML, Gardner, GM, Linkins, AE III, Moreth, CMC (1969a) Light-induced absorbance changes of cytochromes and carotenoids in a sulfur bacterium containing bacteriochlorophyll b. Biochim Biophys Acta 172:338–339.CrossRefPubMedGoogle Scholar
  38. Olson JM, Koenig DF, Ledbetter M.C. (1969b) A model of the bacteriochlorophyll-protein from green photosynthetic bacteria. Arch Biochem Biophys 129:42–48.CrossRefPubMedGoogle Scholar
  39. Olson JM, Prince RC, Brune DC (1977) Reaction center complexes from green bacteria. Brookhaven Symp Biol 28:238–246Google Scholar
  40. Orf GS, Blankenship RE (2013) Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth Res 116:315–331.CrossRefPubMedGoogle Scholar
  41. Orf GS, Saer R, McIntosh CL, Zhang H, Niedzwiedzki DM, Blankenship RE (2016) Reactive cysteine residues gate energy transfer in the FMO complex from Chlorobaculum tepidum. Proc Natl Acad Sci USA 113:E4486–E4493.CrossRefPubMedGoogle Scholar
  42. Pearlstein RM and Hemenger RP (1978) Bacteriochlorophyll electronic transition moment directions in bacteriochlorophll a protein. Proc Natl Acad Sci USA 75:4920–4924CrossRefPubMedGoogle Scholar
  43. Pierson BK, Olson JM (1987) Photosynthetic bacteria. In: Photosynthesis Amesz, (ed), New comprehensive biochemistry, Elsevier, Amsterdam, pp. 21–42Google Scholar
  44. Prince RC, Olson JM (1976) Some thermodynamic and kinetic properties of the primary photochemical reactants in a complex from a green photosynthetic bacterium. Biochim Biophys Acta 423:357–362Google Scholar
  45. Smith KM, Kehres LA, Fajer J (1983) Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria. J Am Chem Soc 105:1387–1389CrossRefGoogle Scholar
  46. Sybesma C, Olson JM (1963) Transfer of chlorophyll excitation energy in green photosynthetic bacteria. Proc Natl Acad Sci USA 49:248–253CrossRefPubMedGoogle Scholar
  47. Thornber JP, Olson JM (1968) The chemical composition of a crystalline bacteriochlorophyll-protein complex isolated from the green bacterium, Chloropseudomonas ethylicum. Biochemistry 7:2242–2249CrossRefPubMedGoogle Scholar
  48. Thornber JP, Dutton PL, Fajer J, Forman A, Holten D, Olson JM, Parson WW, Prince RC, Tiede DM, Windsor MW (1978) Isolated photochemical reaction centers from bacteriochlorophyll b-containing organisms. Proc. 4th International Congr. on Photosynthesis, DO Hall, J Coombs TW Goodwin, Eds. pp. 55 70.Google Scholar
  49. Tronrud DE, Wen J, Gay L, Blankenship RE (2009) The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res 100:79–87CrossRefPubMedGoogle Scholar
  50. Uehara K, Olson JM (1992) Aggregation of bacteriochlorophyll c homologs to dimers, tetramers, and polymers in water-saturated carbon tetrachloride Photosynth Res 33:251–257CrossRefPubMedGoogle Scholar
  51. van Dorssen RJ, Gerola PD, Olson JM, Amesz J (1986) Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium limicola. Biochim Biophys Acta 848:77–82Google Scholar
  52. Wechsler T, Suter F, Fuller RC, Zuber H (1985) The complete amino acid sequence of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 181:173–178CrossRefGoogle Scholar
  53. Wullink W, Knudsen J, Olson JM, Redlinger TE, van Bruggen EFJ (1991) Localization of polypeptides in isolated chlorosomes from green phototrophic bacteria by immuno-gold labeling electron microscopy. Biochim Biophys Acta 1060:97–105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Robert E. Blankenship
    • 1
  • Daniel C. Brune
    • 2
  • Jon C. Olson
    • 3
  1. 1.Departments of Biology and ChemistryWashington University in St. LouisSt. LouisUSA
  2. 2.School of Life SciencesArizona State UniversityTempeUSA
  3. 3.Department of Biostatistics and EpidemiologyUniversity of Massachusetts, AmherstAmherstUSA

Personalised recommendations