Photosynthesis Research

, Volume 136, Issue 2, pp 129–138 | Cite as

Faster photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts

  • Rodrigo Gómez
  • Néstor Carrillo
  • María P. Morelli
  • Suresh Tula
  • Fahimeh Shahinnia
  • Mohammad-Reza Hajirezaei
  • Anabella F. Lodeyro
Original Article


Plants grown in the field experience sharp changes in irradiation due to shading effects caused by clouds, other leaves, etc. The excess of absorbed light energy is dissipated by a number of mechanisms including cyclic electron transport, photorespiration, and Mehler-type reactions. This protection is essential for survival but decreases photosynthetic efficiency. All phototrophs except angiosperms harbor flavodiiron proteins (Flvs) which relieve the excess of excitation energy on the photosynthetic electron transport chain by reducing oxygen directly to water. Introduction of cyanobacterial Flv1/Flv3 in tobacco chloroplasts resulted in transgenic plants that showed similar photosynthetic performance under steady-state illumination, but displayed faster recovery of various photosynthetic parameters, including electron transport and non-photochemical quenching during dark–light transitions. They also kept the electron transport chain in a more oxidized state and enhanced the proton motive force of dark-adapted leaves. The results indicate that, by acting as electron sinks during light transitions, Flvs contribute to increase photosynthesis protection and efficiency under changing environmental conditions as those found by plants in the field.


Photosynthesis Alternative electron transport Flavodiiron proteins Non-photochemical quenching Dark–light transitions Photosynthetic efficiency 



We thank Álvaro Quijano (Universidad Nacional de Rosario, FCAgR, Argentina) for providing the MultispeQ-Beta device. This work was supported by Grants PICT 2014-2496 and PICT 2015-3828 from the National Agency for the Promotion of Science and Technology (ANPCyT, Argentina), by PIP 1075 from the National Research Council of Argentina (CONICET), by the Federal Ministry of Education and Research (BMBF, Germany), and by the Project Management Juelich (PTJ, Germany). RG is a Fellow of the Bunge & Born Foundation. NC and AFL are faculty members of the School of Biochemical and Pharmaceutical Sciences, University of Rosario (Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina) and staff members of the National Research Council (CONICET, Argentina).


The funding were provided by National Agency for the Promotion of Science and Technology (PICT 2014-2496 and PICT 2015-3828), National Research Council of Argentina (PIP 1075), Federal Ministry of Education and Research and Bundesministerium für Bildung und Forschung.

Supplementary material

11120_2017_449_MOESM1_ESM.pdf (20 kb)
Supplementary material 1 (PDF 19 KB)
11120_2017_449_MOESM2_ESM.pdf (143 kb)
Supplementary material 2 (PDF 142 KB)
11120_2017_449_MOESM3_ESM.pdf (21 kb)
Supplementary material 3 (PDF 21 KB)
11120_2017_449_MOESM4_ESM.pdf (53 kb)
Supplementary material 4 (PDF 52 KB)


  1. Ahn TK, Avenson TJ, Peers G, Li Z, Dall’Osto L, Bassi R, Niyogi KK, Fleming GR (2009) Investigating energy partitioning during photosynthesis using an expanded quantum yield convention. Chem Phys 357:151–158CrossRefGoogle Scholar
  2. Allahverdiyeva Y, Isojärvi J, Zhang P, Aro EM (2015) Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. Life 5:716–743CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639CrossRefGoogle Scholar
  4. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113CrossRefPubMedGoogle Scholar
  5. Duffy CD, Ruban AV (2015) Dissipative pathways in the photosystem-II antenna in plants. J Photochem Photobiol B 152:215–226CrossRefPubMedGoogle Scholar
  6. Ermakova M, Battchikova N, Allahverdiyeva Y, Aro EM (2013) Novel heterocyst-specific flavodiiron proteins in Anabaena sp. PCC 7120. FEBS Lett 587:82–87CrossRefPubMedGoogle Scholar
  7. Gallois P, Marinho P (1995) Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. In: Jones H (ed) Methods in molecular biology. Plant gene transfer and expression protocols, vol 49. Humana Press Inc, Totowa, NJ, pp 39–48CrossRefGoogle Scholar
  8. Gerotto C, Alboresi A, Meneghesso A, Jokel M, Suorsa M, Aro EM, Morosinotto T (2016) Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens. Proc Natl Acad Sci USA 113:12322–12327CrossRefPubMedPubMedCentralGoogle Scholar
  9. Giró M, Ceccoli RD, Poli HO, Carrillo N, Lodeyro AF (2011) An in vivo system involving co-expression of cyanobacterial flavodoxin and ferredoxin–NADP+ reductase confers increased tolerance to oxidative stress in plants. FEBS Open Biol 1:7–13CrossRefGoogle Scholar
  10. Hagemann M, Fernie A, Espie G, Kern R, Eisenhut M, Reumann S, Bauwe H, Weber A (2013) Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biol 15:639–647CrossRefPubMedGoogle Scholar
  11. Hope AB, Valente P, Matthews DB (1994) Effects of pH on the kinetics of redox reactions in and around the cytochromebf complex in an isolated system. Photosynth Res 42:111–120Google Scholar
  12. Ilík P, Pavlovič A, Kouřil R, Alboresi A, Morosinotto T, Allahverdiyeva Y, Aro EM, Yamamoto H, Shikanai T (2017) Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. New Phytol 214:967–972CrossRefPubMedGoogle Scholar
  13. Jagannathan B, Shen G, Golbeck JH (2012) The evolution of Type I reaction centers: the response to oxygenic photosynthesis. In: Burnap RL, Vermaas WFJ (eds) Functional genomics and evolution of photosynthetic systems. Springer, pp 285–316Google Scholar
  14. Jarvis P, Chen L-J, Li H-M, Peto CA, Fankhauser C, Chory J (1998) An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282:100–103CrossRefPubMedGoogle Scholar
  15. Joët T, Cournac L, Horvath EM, Medgyesy P, Peltier G (2001) Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. Plant Physiol 125:1919–1929CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kanazawa A, Ostendorf E, Kohzuma K, Hoh D, Strand D, Sato-Cruz M, Savage L, Cruz J, Fisher N, Froechlich J, Kramer D (2017) Chloroplast ATP synthase modulation of the thylakoid proton motive force: implications for Photosystem I and Photosystem II photoprotection. Front Plant Sci. doi: 10.3389/fpls.2017.00719 PubMedPubMedCentralGoogle Scholar
  17. Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78CrossRefPubMedGoogle Scholar
  18. Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynth Res 79:209–218CrossRefPubMedGoogle Scholar
  19. Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354:857–861CrossRefPubMedGoogle Scholar
  20. Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers MI, Roth MG, Bi K, TerAvest D, Weebadde P (2016) MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Soc Open Sci 3:160592CrossRefGoogle Scholar
  21. Külheim C, Ågren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93CrossRefPubMedGoogle Scholar
  22. Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nishio JN, Whitmarsh J (1993) Dissipation of the proton electrochemical potential in intact chloroplasts (II. The pH gradient monitored by cytochrome f reduction kinetics). Plant Physiol 101:89–96Google Scholar
  24. Pierella Karlusich JJ, Lodeyro AF, Carrillo N (2014) The long goodbye: the rise and fall of flavodoxin during plant evolution. J Exp Bot 65:5161–5178CrossRefPubMedPubMedCentralGoogle Scholar
  25. Schmittgen T, Livak K (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  26. Shimakawa G, Ishizaki K, Tsukamoto S, Tanaka M, Sejima T, Miyake C (2017) The liverwort, Marchantia, drives alternative electron flow using a flavodiiron protein to protect PSI. Plant Physiol 173:1636–1647CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shirao M, Kuroki S, Kaneko K, Kinjo Y, Tsuyama M, Förster B, Takahashi S, Badger MR (2013) Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms. Plant Cell Physiol 54:1152–1163CrossRefPubMedGoogle Scholar
  28. Sugimoto K, Okegawa Y, Tohri A, Long TA, Covert SF, Hisabori T, Shikanai T (2013) A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. Plant Cell Physiol 54:1525–1534CrossRefPubMedGoogle Scholar
  29. Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60CrossRefPubMedGoogle Scholar
  30. Vicente JB, Gomes CM, Wasserfallen A, Teixeira M (2002) Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem Biophys Res Comm 294:82–87CrossRefPubMedGoogle Scholar
  31. Vicente JB, Justino MC, Gonçalves VL, Saraiva LM, Teixeira M (2008) Biochemical, spectroscopic, and thermodynamic properties of flavodiiron proteins. Methods Enzymol 437:21–45CrossRefPubMedGoogle Scholar
  32. Yamamoto H, Takahashi S, Badger MR, Shikanai T (2016) Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nat Plants. doi: 10.1038/nplants.2016.12 PubMedGoogle Scholar
  33. Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Ann Rev Plant Biol 67:81–106CrossRefGoogle Scholar
  34. Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55:1167–1175CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)RosarioArgentina
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant ResearchStadt SeelandGermany
  3. 3.Departamento de Química Biológica (QB 23), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires (UBA)Buenos AiresArgentina

Personalised recommendations