Photosynthesis Research

, Volume 134, Issue 1, pp 71–82 | Cite as

Carbon use efficiencies and allocation strategies in Prochlorococcus marinus strain PCC 9511 during nitrogen-limited growth

  • Kristina Felcmanová
  • Martin Lukeš
  • Eva Kotabová
  • Evelyn Lawrenz
  • Kimberly H. Halsey
  • Ondřej PrášilEmail author
Original Article


We studied cell properties including carbon allocation dynamics in the globally abundant and important cyanobacterium Prochlorococcus marinus strain PCC 9511 grown at three different growth rates in nitrogen-limited continuous cultures. With increasing nitrogen limitation, cellular divinyl chlorophyll a and the functional absorption cross section of Photosystem II decreased, although maximal photosynthetic efficiency of PSII remained unaltered across all N-limited growth rates. Chl-specific gross and net carbon primary production were also invariant with nutrient-limited growth rate, but only 20% of Chl-specific gross carbon primary production was retained in the biomass across all growth rates. In nitrogen-replete cells, 60% of the assimilated carbon was incorporated into the protein pool while only 30% was incorporated into carbohydrates. As N limitation increased, new carbon became evenly distributed between these two pools. While many of these physiological traits are similar to those measured in other algae, there are also distinct differences, particularly the lower overall efficiency of carbon utilization. The latter provides new information needed for understanding and estimating primary production, particularly in the nutrient-limited tropical oceans where P. marinus dominates phytoplankton community composition.


Prochlorococcus marinus Cyanobacteria Primary production Nitrogen limitation Carbon allocation 



We wish to thank Jiří Šetlík for technical support, and Jana Hofhanzlová, Eva Žišková, Jason Dean, and Ondřej Komárek for their assistance. This work was supported by projects MSMT Kontakt II LH11064 (to O. P.), MSMT NPU I LO 1416 (to O. P.), and GAJU 143/2013/P (to K. F.).

Supplementary material

11120_2017_418_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 KB)


  1. Ananyev G, Gates C, Dismukes GC (2016) The oxygen quantum yield in diverse algae is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II. Biochim Biophys Acta-Bioenerg 1857:1380–1391CrossRefGoogle Scholar
  2. Bailey S, Melis A, Mackey KRM, Cardol P, Finazzi G et al (2008) Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim Biophys Acta-Bioenerg 1777:269–276CrossRefGoogle Scholar
  3. Behrenfeld JM, Falkowski PG (1997) A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr 42:1479–1491CrossRefGoogle Scholar
  4. Behrenfeld JM, Prášil O, Babin M, Bruyant F (2004) In search of physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40:4–25CrossRefGoogle Scholar
  5. Behrenfeld JM, Halsey KH, Milligan AJ (2008) Evolved physiological responses of phytoplankton to their integrated growth environment. Phil Trans R Soc B 363:2687–2703CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brand LE, Guillard RRL (1981) The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton. J Exp Mar Biol Ecol 50:119–132CrossRefGoogle Scholar
  7. Bruyant F, Babin M, Genty B, Prášil O, Behrenfeld JM et al (2005) Diel variations in the photosynthetic parameters of Prochlorococcus strain PCC 9511: combined effects of light and cell cycle. Limnol Oceanogr 50:850–863CrossRefGoogle Scholar
  8. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury A (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343CrossRefGoogle Scholar
  9. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206CrossRefPubMedGoogle Scholar
  10. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefPubMedGoogle Scholar
  11. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL et al (2013) Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci 110:9824–9829CrossRefPubMedPubMedCentralGoogle Scholar
  12. Follows MJ, Dutkiewicz S (2011) Modeling diverse communities of marine microbes. Annu Rev Mar Sci 3:427–451CrossRefGoogle Scholar
  13. Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycol 43:485–496CrossRefGoogle Scholar
  14. Giordano M, Kansiz M, Heraud P, Beardall J, Wood B, McNaughton D (2001) Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). J Phycol 37:271–279CrossRefGoogle Scholar
  15. Giordano M, Palmucci M, Norici A (2015) Taxonomy and growth conditions concur to determine the energetic suitability of algal fatty acid complements. J Appl Phycol 27:1401–1413CrossRefGoogle Scholar
  16. Graff JR, Milligan AJ, Behrenfeld MJ (2012) The measurement of phytoplankton biomass using flow-cytometric sorting and elemental analysis of carbon. Limnol Oceanogr Method 10:910–920CrossRefGoogle Scholar
  17. Halsey KH, Jones B (2015) Phytoplankton strategies for photosynthetic energy allocation. Annu Rev Mar Sci 7:265–297CrossRefGoogle Scholar
  18. Halsey KH, Milligan AJ, Behrenfeld MJ (2010) Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production. Photosynth Res 103:125–137CrossRefPubMedGoogle Scholar
  19. Halsey KH, Milligan AJ, Behrenfeld MJ (2011) Linking time-dependent carbon-fixation efficiencies in Dunaliella tertiolecta (Chlorophyceae) to underlying metabolic pathways. J Phycol 47:1–11CrossRefGoogle Scholar
  20. Halsey KH, O’Malley RT, Graff JR, Milligan AJ, Behrenfeld MJ (2013) A common partitioning strategy for photosynthetic products in evolutionarily distinct phytoplankton species. New Phytol 198:1030–1038CrossRefPubMedGoogle Scholar
  21. Halsey KH, Milligan AJ, Behrenfeld MJ (2014) Contrasting strategies of photosynthetic energy utilization drive lifestyle strategies in ecologically important picoeukaryotes. Metabolites 4:260–280CrossRefPubMedPubMedCentralGoogle Scholar
  22. Herzig R, Falkowski PG (1989) Nitrogen limitation in Isochrysis galbana (Haptophyceae). I. Photosynthetic energy conversion and growth efficiencies. J Phycol 25:462–471CrossRefGoogle Scholar
  23. Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: Insight through comparative genomics. Photosynth Res 70:53–71CrossRefPubMedGoogle Scholar
  24. Jakob T, Wagner H, Stehfest K, Wilhelm C (2007) A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation. J Exp Bot 58:2101–2112CrossRefPubMedGoogle Scholar
  25. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  26. Kaffes A, Thoms S, Trimborn S, Rost B, Langer G et al (2010) Carbon and nitrogen fluxes in the marine coccolithophore Emiliana huxleyi grown under different nitrate concentrations. J Exp Mar Biol Ecol 393:1–8CrossRefGoogle Scholar
  27. Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta-Bioenerg 1367:88–106CrossRefGoogle Scholar
  28. Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112CrossRefGoogle Scholar
  29. Kulk G, Van de Poll WH, Visser RJW, Buma AGJ (2011) Distinct differences in photoacclimation potential between prokaryotic and eukaryotic oceanic phytoplankton. J Exp Mar Biol Ecol 398:63–72CrossRefGoogle Scholar
  30. Kulk G, de Vries P, Van de Poll WH, Visser RJW, Buma AGJ (2012) Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton. Mar Ecol Prog Ser 466:43–55CrossRefGoogle Scholar
  31. Kunath C, Jakob T, Wilhelm C (2012) Different phycobilin antenna organizations affect the balance between light use and growth rate in the cyanobacterium Microcystis aeruginosa and in the cryptophyte Cryptomonas ovata. Photosynth Res 111:173–183CrossRefPubMedGoogle Scholar
  32. LaRoche J, Rost B, Engel A (2010) Bioassays, batch culture and chemostat experimentation. In Riebesell U (ed) Guide to best practices for ocean acidification research and data reporting. Publication Office of the European Union, Luxembourg, pp 81–94Google Scholar
  33. Lawrenz E, Silsbe G, Capuzzo E, Ylostalo P, Forster RM et al (2013) Predicting the electron requirement for carbon fixation in seas and oceans. PLoS ONE 8:e58137CrossRefPubMedPubMedCentralGoogle Scholar
  34. Laws EA, Bannister TT (1980) Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture with implications for phytoplankton growth in the ocean. Limnol Oceanogr 25:457–473CrossRefGoogle Scholar
  35. Laws EA, Sakshaug E, Babin M, Dandonneau Y, Falkowski P et al (2002) Photosynthesis and primary productivity in marine ecosystems: practical aspects and application of techniques. JGOFS Report No. 36, BergenGoogle Scholar
  36. Lindell D, Erdner D, Marie D, Prášil O, Koblížek M et al (2002) Nitrogen stress response of Prochlorococcus strain PCC 9511 (Oxyphotobacteria) involves contrasting regulation of ntcA and amt1. J Phycol 38: 1113–1124CrossRefGoogle Scholar
  37. Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639CrossRefGoogle Scholar
  38. MacKey KRM, Paytan A, Grossman AR, Bailey S (2008) A photosynthetic strategy for coping in a high-light, low nutrient environment. Limnol Oceanogr 53:900–913CrossRefGoogle Scholar
  39. Marra J (2009) Net and gross primary productivity: weighing in with 14C. Aquat Microb Ecol 56:123–131CrossRefGoogle Scholar
  40. McDonald AE, Vanlerberghe GC (2005) Alternative oxidase and plastoquinol terminal oxidase in marine prokaryotes of the Sargasso Sea. Gene 349:15–24CrossRefPubMedGoogle Scholar
  41. Milligan AJ, Berman-Frank I, Gerchman Y, Dismukes GC, Falkowski PG (2007) Light-dependent oxygen consumption in nitrogen-fixing cyanobacteria plays a key role in nitrogenase protection. J Phycol 43:845–852CrossRefGoogle Scholar
  42. Morris I (1980) Paths of carbon assimilation in marine phytoplankton. In: Falkowski PG primary productivity in the sea. Springer, New York, pp 139–159CrossRefGoogle Scholar
  43. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (eds) Methods of soil analysis, part 2: chemical methods. SSSA Book Series No. 5, SSSA, Madison, pp 961–1010Google Scholar
  44. Oxborough K, Moore CM, Suggett DJ, Lawson T, Chan JG, Geider RJ (2012) Direct estimation of functional PSII reaction centre concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRF) data. Limnol Oceanogr Method 10:142–154CrossRefGoogle Scholar
  45. Palmucci M, Ratti S, Giordano M (2011) Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: a Fourier transform infrared spectroscopy approach. J Phycol 47:313–323CrossRefPubMedGoogle Scholar
  46. Parkhill JP, Maillet G, Cullen JJ (2001) Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529CrossRefGoogle Scholar
  47. Partensky F, Garczarek L (2010) Prochlorococcus: advantages and limits of minimalism. Annu Rev Mar Sci 2:305–331CrossRefGoogle Scholar
  48. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127PubMedPubMedCentralGoogle Scholar
  49. Pistorius AM, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129CrossRefPubMedGoogle Scholar
  50. Porra RJ (2006) Spectrometric assays for plant, algal and bacterial chlorophylls. In: Grimm B (ed) Chlorophylls and bacteriochlorophylls biochemistry, biophysics, function and applications. Springer, Berlin, pp 95–107CrossRefGoogle Scholar
  51. Quigg A, Kotabova E, Jaresova J, Kana R, Setlik J et al (2012) Photosynthesis in Chromera velia represents a simple system with high efficiency. PLoS ONE 7:e47036CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rippka R, Coursin T, Hess W, Lichtlé C, Scanlan DJ et al (2000) Prochlorococcus marinus Chisholm et al. 1992 subs. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria). Int J Syst Evol Microbiol 50:1833–1847CrossRefPubMedGoogle Scholar
  53. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047CrossRefPubMedGoogle Scholar
  54. Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KH (2015) Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS ONE 10:e0139061CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shapiro HM (2005) Data analysis. In: Practical flow cytometry. Wiley, New York, pp 225–256CrossRefGoogle Scholar
  56. Siegel DA, Behrenfeld MJ, Maritorena S, McClain CR, Antoine D et al (2013) Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens Environ 135:77–91CrossRefGoogle Scholar
  57. Silsbe GM, Oxborough K, Suggett DJ, Forster RM, Ihnken S et al (2015) Toward autonomous measurements of photosynthetic electron transport rates: an evaluation of active fluorescence-based measurements of photochemistry. Limnol Oceanogr Method 13:138–155CrossRefGoogle Scholar
  58. Suggett DJ, Moore MC, Geider RJ (2010) Estimating aquatic productivity from active fluorescence measurement. In: Suggett DJ (ed) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 103–127CrossRefGoogle Scholar
  59. Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the ocean: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142CrossRefPubMedGoogle Scholar
  60. Vaulot D, Marie D, Olson RJ, Chisholm SW (1995) Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268:1480–1482CrossRefPubMedGoogle Scholar
  61. Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C et al (2009) Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS ONE 4:1–18CrossRefGoogle Scholar
  62. Zorz JK, Allanach JR, Murphy CD, Roodvoets MS, Campbell DA, Cockshutt AM (2015) The RUBISCO to photosystem II ratio limits the maximum photosynthetic rate in picocyanobacteria. Life 5:403–417CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute of MicrobiologyCzech Academy of SciencesTřeboňCzech Republic
  2. 2.Department of Experimental Plant Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of MicrobiologyOregon State UniversityCorvallisUSA

Personalised recommendations