Photosynthesis Research

, Volume 134, Issue 1, pp 51–58 | Cite as

Pigment structure in the violaxanthin–chlorophyll-a-binding protein VCP

  • Manuel J. Llansola-Portoles
  • Radek Litvin
  • Cristian Ilioaia
  • Andrew A. Pascal
  • David Bina
  • Bruno Robert
Original Article


Resonance Raman spectroscopy was used to evaluate pigment-binding site properties in the violaxanthin–chlorophyll-a-binding protein (VCP) from Nannochloropsis oceanica. The pigments bound to this antenna protein are chlorophyll-a, violaxanthin, and vaucheriaxanthin. The molecular structures of bound Chl-a molecules are discussed with respect to those of the plant antenna proteins LHCII and CP29, the crystal structures of which are known. We show that three populations of carotenoid molecules are bound by VCP, each of which is in an all-trans configuration. We assign the lower-energy absorption transition of each of these as follows. One violaxanthin population absorbs at 485 nm, while the second population is red-shifted and absorbs at 503 nm. The vaucheriaxanthin population absorbs at 525 nm, a position red-shifted by 2138 cm−1 as compared to isolated vaucheriaxanthin in n-hexane. The red-shifted violaxanthin is slightly less planar than the blue-absorbing one, as observed for the two central luteins in LHCII, and we suggest that these violaxanthins occupy the two equivalent binding sites in VCP at the centre of the cross-brace. The presence of a highly red-shifted vaucheriaxanthin in VCP is reminiscent of the situation of FCP, in which (even more) highly red-shifted populations of fucoxanthin are present. Tuning carotenoids to absorb in the green-yellow region of the visible spectrum appears to be a common evolutionary response to competition with other photosynthetic species in the aquatic environment.


Light-harvesting complex VCP Resonance Raman Nannochloropsis oceanica Carotenoids 



This work was supported by the ERC funding agency (PHOTPROT project) and The French Infrastructure for Integrated Structural Biology (FRISBI). The research in the Czech Republic was supported by the Czech Science Foundation Grant 14-01377P and by institutional funding RVO:60077344.


  1. Andreeva A, Apostolova I, Velitchkova M (2011) Temperature dependence of resonance Raman spectra of carotenoids. Spectrochim Acta Part A 78(4):1261–1265CrossRefGoogle Scholar
  2. Apt KE, Clendennen SK, Powers DA, Grossman AR (1995) The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga Macrocystis pyrifera. Mol Gen Genet 246(4):455–464CrossRefPubMedGoogle Scholar
  3. Basso S, Simionato D, Gerotto C, Segalla A, Giacometti GM, Morosinotto T (2014) Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I. Biochim Biophys Acta 1837(2):306–314CrossRefPubMedGoogle Scholar
  4. Britton G, Liaaen-Jensen S, Pfander H (2008) Carotenoids, vol 4. Verlag, BaselCrossRefGoogle Scholar
  5. Busch A, Hippler M (2011) The structure and function of eukaryotic photosystem I. Biochim Biophys Acta 1807(8):864–877CrossRefPubMedGoogle Scholar
  6. Carbonera D, Agostini A, Di Valentin M, Gerotto C, Basso S, Giacometti GM, Morosinotto T (2014) Photoprotective sites in the violaxanthin–chlorophyll a binding protein (vcp) from Nannochloropsis gaditana. Biochim Biophys Acta 1837(8):1235–1246CrossRefPubMedGoogle Scholar
  7. Dokter AM, van Hemert MC, In ‘t Velt CM, van der Hoef K, Lugtenburg J, Frank HA, Groenen EJJ (2002) Resonance Raman spectrum of all-trans-spheroidene. DFT analysis and isotope labeling. J Phys Chem A 106(41):9463–9469CrossRefGoogle Scholar
  8. Dolganov NA, Bhaya D, Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92(2):636–640CrossRefPubMedPubMedCentralGoogle Scholar
  9. Engelken J, Brinkmann H, Adamska I (2010) Taxonomic distribution and origins of the extended lhc (light-harvesting complex) antenna protein superfamily. BMC Evol Biol 10(1):1–15CrossRefGoogle Scholar
  10. Feiler U, Mattioli TA, Katheder I, Scheer H, Lutz M, Robert B (1994) Effects of vinyl substitutions on resonance Raman spectra of (bacterio)chlorophylls. J Raman Spectrosc 25(5):365–370CrossRefGoogle Scholar
  11. Fujiwara M, Tasumi M (1986) Metal-sensitive bands in the Raman and infrared spectra of intact and metal-substituted chlorophyll a. J Phys Chem 90(22):5646–5650CrossRefGoogle Scholar
  12. Gall A, Pascal AA, Robert B (2015) Vibrational techniques applied to photosynthesis: resonance Raman and fluorescence line-narrowing. Biochim Biophys Acta 1847(1):12–18CrossRefPubMedGoogle Scholar
  13. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science 272(5269):1788–1791CrossRefPubMedGoogle Scholar
  14. Keşan G, Litvín R, Bína D, Durchan M, Šlouf V, Polívka T (2016) Efficient light-harvesting using non-carbonyl carotenoids: energy transfer dynamics in the vcp complex from Nannochloropsis oceanica. Biochim Biophys Acta 1857(4):370–379CrossRefPubMedGoogle Scholar
  15. Kish E, Wang K, Llansola-Portoles MJ, Ilioaia C, Pascal AA, Robert B, Yang C (2016) Probing the pigment binding sites in LHCII with resonance Raman spectroscopy: the effect of mutations at S123. Biochim Biophys Acta 1857(9):1490–1496CrossRefPubMedGoogle Scholar
  16. Koyama Y, Kito M, Takii T, Saiki K, Tsukida K, Yamashita J (1982) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C with those of cis–trans isomers of β-carotene. Biochim Biophys Acta 680(2):109–118CrossRefGoogle Scholar
  17. Koyama Y, Takii T, Saiki K, Tsukida K (1983) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. 2. Comparison of the resonance Raman lines of the reaction centers with those of the 14 different cistrans isomers of β-carotene. Photobiochem Photobiophys 5:139–150Google Scholar
  18. Koyama Y, Takatsuka I, Nakata M, Tasumi M (1988) Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: key bands distinguishing stretched or terminal-bent configurations form central-bent configurations. J Raman Spectrosc 19(1):37–49CrossRefGoogle Scholar
  19. Koziol AG, Borza T, Ishida K-I, Keeling P, Lee RW, Durnford DG (2007) Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol 143(4):1802–1816CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lapouge K, Näveke A, Sturgis JN, Hartwich G, Renaud D, Simonin I, Lutz M, Scheer H, Robert B (1998) Non-bonding molecular factors influencing the stretching wavenumbers of the conjugated carbonyl groups of bacteriochlorophyll a. J Raman Spectrosc 29(10–11):977–981CrossRefGoogle Scholar
  21. Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res 130(1):137–150CrossRefPubMedGoogle Scholar
  22. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 a resolution. Nature 428(6980):287–292CrossRefPubMedGoogle Scholar
  23. Llansola-Portoles MJ, Uragami C, Pascal AA, Bina D, Litvin R, Robert B (2016) Pigment structure in the FCP-like light-harvesting complex from Chromera velia. Biochim Biophys Acta 1857(11):1759–1765CrossRefPubMedGoogle Scholar
  24. Llansola-Portoles MJ, Sobotka R, Kish E, Shukla MK, Pascal AA, Polívka T, Robert B (2017) Twisting a β-carotene, an adaptive trick from nature for dissipating energy during photoprotection. J Biol Chem 292(4):1396–1403CrossRefPubMedGoogle Scholar
  25. Lutz M (1977) Antenna chlorophyll in photosynthetic membranes. A study by resonance Raman spectroscopy. Biochim Biophys Acta 460(3):408–430CrossRefPubMedGoogle Scholar
  26. Lutz M, Mäntele W (1991). In: Scheer H (ed) The chlorophylls. CRC Press Inc., Boca Raton, pp 855–902Google Scholar
  27. Lutz M, Szponarski W, Berger G, Robert B, Neumann J-M (1987) The stereoisomerization of bacterial, reaction-center-bound carotenoids revisited: an electronic absorption, resonance Raman and 1H-NMR study. Biochem Biophys Acta 894:423–433Google Scholar
  28. Macernis M, Sulskus J, Malickaja S, Robert B, Valkunas L (2014) Resonance Raman spectra and electronic transitions in carotenoids: a density functional theory study. J Phys Chem A 118(10):1817–1825CrossRefPubMedGoogle Scholar
  29. Macernis M, Galzerano D, Sulskus J, Kish E, Kim Y-H, Koo S, Valkunas L, Robert B (2015) Resonance Raman spectra of carotenoid molecules: influence of methyl substitutions. J Phys Chem A 119(1):56–66CrossRefPubMedGoogle Scholar
  30. Mendes-Pinto MM, Galzerano D, Telfer A, Pascal AA, Robert B, Ilioaia C (2013a) Mechanisms underlying carotenoid absorption in oxygenic photosynthetic proteins. J Biol Chem 288(26):18758–18765CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mendes-Pinto MM, Sansiaume E, Hashimoto H, Pascal AA, Gall A, Robert B (2013b) Electronic absorption and ground state structure of carotenoid molecules. J Phys Chem B 117(38):11015–11021CrossRefPubMedGoogle Scholar
  32. Näveke A, Lapouge K, Sturgis JN, Hartwich G, Simonin I, Scheer H, Robert B (1997) Resonance Raman spectroscopy of metal-substituted bacteriochlorophylls: characterization of Raman bands sensitive to bacteriochlorin conformation. J Raman Spectrosc 28(8):599–604CrossRefGoogle Scholar
  33. Neilson JD, Durnford D (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 106(1–2):57–71CrossRefPubMedGoogle Scholar
  34. Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W (2011) Structural insights into energy regulation of light-harvesting complex cp29 from spinach. Nat Struct Mol Biol 18(3):309–315CrossRefPubMedGoogle Scholar
  35. Pascal AA, Caron L, Rousseau B, Lapouge K, Duval JC, Robert B (1998) Resonance Raman spectroscopy of a light-harvesting protein from the brown alga Laminaria saccharina. Biochemistry 37(8):2450–2457CrossRefPubMedGoogle Scholar
  36. Pascal AA, Wacker U, Irrgang K-D, Horton P, Renger G, Robert B (2000) Pigment binding site properties of two photosystem II antenna proteins: a resonance Raman investigation. J Biol Chem 275(29):22031–22036CrossRefPubMedGoogle Scholar
  37. Paulsen H, Rümler U, Rüdiger W (1990) Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta 181(2):204–211CrossRefPubMedGoogle Scholar
  38. Pendon ZD, Sullivan JO, van der Hoef I, Lugtenburg J, Cua A, Bocian DF, Birge RR, Frank HA (2005) Stereoisomers of carotenoids: spectroscopic properties of locked and unlocked cis-isomers of spheroidene. Photosynth Res 86(1):5–24CrossRefPubMedGoogle Scholar
  39. Premvardhan L, Bordes L, Beer A, Büchel C, Robert B (2009) Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy. J Phys Chem B 113(37):12565–12574CrossRefPubMedGoogle Scholar
  40. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686CrossRefPubMedPubMedCentralGoogle Scholar
  41. Reimers JR, Cai Z-L, Kobayashi R, Rätsep M, Freiberg A, Krausz E (2013) Assignment of the Q-bands of the chlorophylls: coherence loss via Qx–Qy mixing. Sci Rep 3:2761CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rimai L, Heyde ME, Gill D (1973) Vibrational spectra of some carotenoids and related linear polyenes. Raman spectroscopic study. J Am Chem Soc 95(14):4493–4501CrossRefPubMedGoogle Scholar
  43. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112CrossRefPubMedGoogle Scholar
  44. Ruban AV, Horton P, Robert B (1995) Resonance Raman spectroscopy of the photosystem II light-harvesting complex of green plants: a comparison of trimeric and aggregated states. Biochemistry 34(7):2333–2337CrossRefPubMedGoogle Scholar
  45. Ruban AV, Pascal AA, Robert B (2000) Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Lett 477(3):181–185CrossRefPubMedGoogle Scholar
  46. Saito S, Tasumi M (1983) Normal-coordinate analysis of β-carotene isomers and assignments of the Raman and infrared bands. J Raman Spectrosc 14(5):310–321CrossRefGoogle Scholar
  47. Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T (2012) Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PLoS ONE 7(6):e38975CrossRefPubMedPubMedCentralGoogle Scholar
  48. Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102(10):6026–6032CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institute for Integrative Biology of the Cell (I2BC), IBITECS, CEA, CNRSUniversité Paris-SaclayGif-sur-Yvette CedexFrance
  2. 2.Institute of Plant Molecular BiologyBiology Centre CASCeske BudejoviceCzech Republic
  3. 3.Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic

Personalised recommendations