Photosynthesis Research

, Volume 132, Issue 3, pp 311–324 | Cite as

Absorptance determinations on multicellular tissues

  • Román Manuel Vásquez-Elizondo
  • Lyz Legaria-Moreno
  • Miguel Ángel Pérez-Castro
  • Wiebke E. Krämer
  • Tim Scheufen
  • Roberto Iglesias-Prieto
  • Susana Enríquez
Technical Communication


The analysis of the variation of the capacity and efficiency of photosynthetic tissues to collect solar energy is fundamental to understand the differences among species in their ability to transform this energy into organic molecules. This analysis may also help to understand natural changes in species distribution and/or abundance, and differences in species ability to colonize contrasting light environments or respond to environmental changes. Unfortunately, the challenge that optical determinations on highly dispersive samples represent has strongly limited the progression of this analysis on multicellular tissues, limiting our knowledge of the role that optical properties of photosynthetic tissues may play in the optimization of photosynthesis and growth of benthonic primary producers. The aim of this study is to stimulate the use of optical tools in marine eco-physiology, offering a succinct description of the more convenient tools and also solutions to resolve the more common technical difficulties that arise while performing optical determinations on highly dispersive samples. Our study focuses on two-dimensional (2D-) parameters: absorptance, transmittance, and reflectance, and illustrates with correct and incorrect examples, specific problems and their respective solutions. We also offer a general view of the broad variation in light absorption shown by photosynthetic structures of marine primary producers, and its low association with pigment content. The ecological and evolutionary functional implications of this variability deserve to be investigated across different taxa, populations, and marine environments.


Light absorption Scattering Absorptance Reflectance Transmittance Macrophytes Corals 



Three Mexican research projects DGAPA (IN206710); CONACYT (Conv-CB-2009: 129880); and CONACYT-104643 granted to SE have supported this research. The postgraduate program Posgrado en Ciencias del Mar y Limnología (PCMyL) of the Universidad Nacional Autónoma de México (UNAM) is acknowledged for providing the 2-year CONACYT fellowship to the Master thesis of L L-M and MA P-C and 3 years to TS and 4 years to RM V-E to support their respective PhD projects. One UNAM postdoctoral fellowship provided 2-year financial support to WEK. The authors would like to thank Dr. Eugenio R. Méndez for his kind and fundamental contributions to facilitate the immersion of marine biological students and researchers into the understanding of complex interactions between light and biological structures.

Supplementary material

11120_2017_395_MOESM1_ESM.pdf (689 kb)
Supplementary material 1 (PDF 688 KB)


  1. Bass M, van Stryland EW, Williams DR, Wolfe WL (2001) Handbook of optics. Volume II. Devices, measurements, and properties. 2nd edn. Sponsored by the Optical Society of America. McGraw-Hill, Inc. New YorkGoogle Scholar
  2. Beer S, Axelsson L (2004) Limitations in the use of PAM fluorometry for measuring photosynthetic rates of macroalgae at high irradiances. Eur J Phycol 39(1):1–7. doi: 10.1080/0967026032000157138 CrossRefGoogle Scholar
  3. Beer S, Bjork M (2000) A comparison of photosynthetic rates measured by pulse amplitude modulated (PAM) fluorometry and O2 evolution in two tropical seagrasses. Aquat Bot 66:69–73. doi: 10.1016/S0304-3770(99)00020-0 CrossRefGoogle Scholar
  4. Beer S, Vilenkin B, Weil A, Veste M, Susel L, Eshel A (1998) Measuring photosynthesis rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar Ecol Prog Ser 164:293–300CrossRefGoogle Scholar
  5. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170(4):489–504. doi: 10.1007/BF00402983 CrossRefPubMedGoogle Scholar
  6. Borowitzka MA, Larkum AWD (1987) Calcification in algae: mechanisms and the role of metabolism. Crit Rev Plant Sci 6:1–45CrossRefGoogle Scholar
  7. Cabello-Pasini A, Figueroa FL (2005) Effect of nitrate concentration on the relationship between photosynthetic oxygen evolution and electron transport rate in Ulva rigida (Chlorophyta). J Phycol 41(6):1169–1177. doi: 10.1111/jpy.2005.41.issue-6 CrossRefGoogle Scholar
  8. Cayabyab NM, Enríquez S (2007) Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study. New Phytol 176(1):108–123. doi: 10.1111/j.1469-8137.2007.02147.x CrossRefPubMedGoogle Scholar
  9. Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907. doi: 10.1007/s00338-010-0638-x CrossRefGoogle Scholar
  10. Cummings ME, Zimmerman RC (2003) Light harvesting and the package effect in the seagrasses Thalassia testudinum Banks ex König and Zostera marina L.: optical constraints on photoacclimation. Aquat Bot 75(3):261–274. doi: 10.1016/S0304-3770(02)00180-8 CrossRefGoogle Scholar
  11. Dobbs FC, Zimmerman RC, Drake LA (2004) Occurrence of intracellular crystals in leaves of Thalassia testudinum. Aquat Bot 80(1):23–28. doi: 10.1016/j.aquabot.2004.03.003 CrossRefGoogle Scholar
  12. Durako MJ (2007) Leaf optical properties and photosynthetic leaf absorptance in several Australian seagrasses. Aquat Bot 87:83–89. doi: 10.1016/j.aquabot.2007.03.005 CrossRefGoogle Scholar
  13. Duysens LMN (1956) The flattening effect of the absorption spectra of suspensions as compared to that of solutions. Biochim Biophys Acta 19:1–12CrossRefPubMedGoogle Scholar
  14. Enríquez S (2005) Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. Mar Ecol Prog Ser 289:141–150. doi: 10.3354/meps289141 CrossRefGoogle Scholar
  15. Enríquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 187–208. doi: 10.1007/978-90-481-9268-7 Google Scholar
  16. Enríquez S, Sand-Jensen K (2003) Variation in light absorption properties of Mentha aquatica L. as a function of leaf form: implications for plant growth. Int J Plant Sci 164(1):125–136. doi: 10.1086/344759 CrossRefGoogle Scholar
  17. Enríquez S, Schubert N (2014) Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nat Commun 5:3835. doi: 10.1038/ncomms4835 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Enríquez S, Agustí S, Duarte C (1992) Light absorption by seagrass Posidonia oceanica leaves. Mar Ecol Prog Ser 86:201–201CrossRefGoogle Scholar
  19. Enríquez S, Agustí S, Duarte CM (1994) Light absorption by marine macrophytes. Oecologia 98(2):121–129. doi: 10.1007/BF00341462 CrossRefPubMedGoogle Scholar
  20. Enríquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50(4):1025–1032. doi: 10.4319/lo.2005.50.4.1025 CrossRefGoogle Scholar
  21. Enríquez S, Méndez ER, Hoegh-Guldberg O, Iglesias-Prieto R (2017) Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc Royal Soc London B (in press)Google Scholar
  22. Figueroa FL, Conde-Álvarez R, Gómez I (2003) Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynth Res 75:259–275. doi: 10.1023/A:1023936313544 CrossRefPubMedGoogle Scholar
  23. Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia 91:377–384. doi: 10.1007/BF00317627 CrossRefPubMedGoogle Scholar
  24. Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport rate and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi: 10.1016/j.jembe.2015.09.004 CrossRefGoogle Scholar
  25. Hanssen L (2001) Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples. Appl Opt 40(19):3196–3204. doi: 10.1364/AO.40.003196 CrossRefPubMedGoogle Scholar
  26. Hedley J, Enríquez S (2010) Optical properties of canopies of the tropical seagrass Thalassia testudinum estimated by a three-dimensional radiative transfer model. Limnol Oceanogr 55(4):1537–1550. doi: 10.4319/lo.2010.55.4.1537 CrossRefGoogle Scholar
  27. Iglesias-Prieto R, Trench R (1994) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux density. Mar Ecol Prog Ser 113:163–175. doi: 10.3354/meps113163 CrossRefGoogle Scholar
  28. Jacquez JA, Kuppenheim HF (1955) Spectral reflectance of human skin in the region 235–1000 mµ. J Appl Physiol 7(5):523–528PubMedGoogle Scholar
  29. Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, United KingdomGoogle Scholar
  30. Lüning K, Dring MJ (1985) Action spectra and spectral quantum yield in marine macroalgae with thin and thick thalli. Mar Biol 87:119–129. doi: 10.1007/BF00539419 CrossRefGoogle Scholar
  31. MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38(1):17–38. doi: 10.1046/j.1529-8817.2002.00094.x CrossRefGoogle Scholar
  32. Prychid CJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot 84:725–739CrossRefGoogle Scholar
  33. Ramus J (1990) A form-function analysis of photon capture for seaweeds. Hydrobiologia 204:65–71. doi: 10.1007/Bf00040216 CrossRefGoogle Scholar
  34. Rodríguez-Román A, Hernández-Pech X, Thomé PE, Enríquez S, Iglesias-Prieto R (2006) Photosynthesis and light utilization in the Caribbean coral Montastraea faveolata recovering from a bleaching event. Limnol Oceanogr 51(6):2702–2710. doi: 10.4319/lo.2006.51.6.2702 CrossRefGoogle Scholar
  35. Runcie M, Durako MJ (2004) Among-shoot variability and leaf-specific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. Aquat Bot 80:209–220. doi: 10.1016/j.aquabot.2004.08.001 CrossRefGoogle Scholar
  36. Schubert N, García-Mendoza E, Enríquez S (2011) Is the photo-acclimatory response of Rhodophyta conditioned by the species carotenoid profile? Limnol Oceanogr 56(6):2347–2361. doi: 10.4319/lo.2011.56.6.2347 CrossRefGoogle Scholar
  37. Shibata K (1959) Spectrophotometry of translucence biological materials: opal glass transmission method. Method Biochem Anal 7:77–109. doi: 10.1002/9780470110232.ch3 Google Scholar
  38. Shibata K (1969) Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef. Plant Cell Physiol 10(2):325–335Google Scholar
  39. Stambler N, Dubinsky Z (2004) Stress Effects on metabolism and photosynthesis of hermatypic corals. In: Rosenberg E, Loya Y (eds) Coral Health and Disease. Springer, Berlin, pp 195–215. doi: 10.1007/978-3-662-06414-6_9 CrossRefGoogle Scholar
  40. Terán E, Mendez ER, Enríquez S, Iglesias-Prieto R (2010) Multiple light scattering and absorption in reef-building corals. Appl Opt 49(27):5032–5042. doi: 10.1364/AO.49.005032 CrossRefPubMedGoogle Scholar
  41. Terashima I, Saeki T (1983) Light environment within a leaf I. Optical Properties of paradermal sections of camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant Cell Physiol 24(8):1493–1501CrossRefGoogle Scholar
  42. Thorhaug A, Richardson AD, Berlyn GP (2006) Spectral reflectance of Thalassia testudinum (Hydrocharitaceae) seagrass: low salinity effects. Am J Bot 93:110–117. doi: 10.3732/ajb.93.1.110 CrossRefGoogle Scholar
  43. Vásquez-Elizondo RM, S Enríquez (2016) Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci Rep 6:19030/ doi: 10.1038/srep19030 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vogelmann TC, Björn LO (1983) Response to directional light by leaves of a sun-tracking lupine (Lupinus succulentus). Physiol Plant 59:533–538. doi: 10.1111/j.1399-3054.1983.tb06276.x CrossRefGoogle Scholar
  45. Wangpraseurt D, Larkum AW, Ralph PJ, Kühl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol. doi: 10.3389/fmicb.2012.00316 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Laboratorio de fotobiología, Unidad Académica de Sistemas Arrecifales Puerto MorelosUniversidad Nacional Autónoma de México (UNAM)CancúnMexico

Personalised recommendations