Photosynthesis Research

, Volume 132, Issue 3, pp 257–264 | Cite as

Light dose versus rate of delivery: implications for macroalgal productivity

  • Matthew J. DesmondEmail author
  • Daniel W. Pritchard
  • Christopher D. Hepburn
Original Article


The role of how light is delivered over time is an area of macroalgal photosynthesis that has been overlooked but may play a significant role in controlling rates of productivity and the structure and persistence of communities. Here we present data that quantify the relative influence of total quantum dose and delivery rate on the photosynthetic productivity of five ecologically important Phaeophyceae species from southern New Zealand. Results suggested that greater net oxygen production occurs when light is delivered at a lower photon flux density (PFD) over a longer period compared to a greater PFD over a shorter period, given the same total dose. This was due to greater efficiency (α) at a lower PFD which, for some species, meant a compensatory effect can occur. This resulted in equal or greater productivity even when the total quantum dose of the lower PFD was significantly reduced. It was also shown that light limitation at Huriawa Peninsula, where macroaglae were sourced, may be restricting the acclimation potential of species at greater depths, and that even at shallow depth periods of significant light limitation are likely to occur. This research is of particular interest as the variability of light delivery to coastal reef systems increases as a result of anthropogenic disturbances, and as the value of in situ community primary productivity estimates is recognised.


Photosynthesis Photon flux density Macroalgae Productivity Light dose Light delivery 



We gratefully thank Sean Hesteltine, Emma Kearney, Brenton Twist and Peri Subritzky for assistance with fieldwork. We also acknowledge the East Otago Taiāpure Committee for their support with work carried out within the management area.

Supplementary material

11120_2017_381_MOESM1_ESM.jpg (537 kb)
Supplementary material 1 (JPG 537 KB)
11120_2017_381_MOESM2_ESM.jpg (1.1 mb)
Supplementary material 2 (JPG 1144 KB)
11120_2017_381_MOESM3_ESM.docx (12 kb)
Supplementary material 3 (DOCX 12 KB)


  1. Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol 41:161–236Google Scholar
  2. Anthony KRN, Ridd PV, Orpin AR et al (2004) Temporal variation of light availability in coastal benthic habitats: effects of clouds, turbidity, and tides. Limnol Oceanogr 49:2201–2211CrossRefGoogle Scholar
  3. Aumack CF, Dunton KH, Burd AB et al (2007) Linking light attenuation and suspended sediment loading to benthic productivity within an Arctic kelp-bed community. J Phycol 43:853–863. doi: 10.1111/j.1529-8817.2007.00383.x CrossRefGoogle Scholar
  4. Buchel C, Wilhelm C (1993) In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives. Photochem Photobiol 58:137–148CrossRefGoogle Scholar
  5. Chapman ARO, Burrows EM (1970) Experimental investigations into the controlling effects of light conditions on the development and growth of Desmarestia aculeata (L.) Lamour. Phcologia 9:103–108CrossRefGoogle Scholar
  6. Connell SD (2005) Assembly and maintenance of subtidal habitat heterogeneity: synergistic effects of light penetration and sedimentation. Mar Ecol Prog Ser 289:53–61. doi: 10.3354/meps289053 CrossRefGoogle Scholar
  7. Connell SD, Russell BD, Turner DJ et al (2008) Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar Ecol Prog Ser 360:63–72. doi: 10.3354/meps07526 CrossRefGoogle Scholar
  8. Cooper SR, Brush GS (1993) A 2500-year history of anoxia and eutrophication in Chesapeake Bay. Estuaries 16:617–626CrossRefGoogle Scholar
  9. Desmond MJ, Pritchard DW, Hepburn CD (2015) Light limitation within southern New Zealand kelp forest communities. PLoS ONE 10:1–18. doi: 10.5061/dryad.6mc8k CrossRefGoogle Scholar
  10. Fairhead VA, Cheshire AC (2004) Seasonal and depth related variation in the photosynthesis-irradiance response of Ecklonia radiata (Phaeophyta, Laminariales) at West Island, South Australia. Mar Biol 145:415–426. doi: 10.1007/s00227-004-1330-x Google Scholar
  11. Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14CrossRefGoogle Scholar
  12. Fortes M, Luning K (1980) Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgol Mar Res 29:15–29Google Scholar
  13. Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia 91:377–384CrossRefPubMedGoogle Scholar
  14. Geange SW, Powell A, Clemens-Seely K, Cárdenas CA (2014) Sediment load and timing of sedimentation affect spore establishment in Macrocystis pyrifera and Undaria pinnatifida. Mar Biol 161:1583–1592. doi: 10.1007/s00227-014-2442-6 CrossRefGoogle Scholar
  15. Gomez I, Weykam G, Kloser H, Wiencke C (1997) Photosynthetic light requirements, metabolic carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Prog Ser 148:281–293CrossRefGoogle Scholar
  16. Gómez I, López-Figueroa F, Ulloa N et al (2004) Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Prog Ser 270:103–116. doi: 10.3354/meps270103 CrossRefGoogle Scholar
  17. Hader D-P, Figueroa FL (1997) Photoecophysiology of marine macroalgae. Photochem Photobiol 66:1–14CrossRefGoogle Scholar
  18. Hanelt D, Huppertz K, Nultsch W (1993) Daily course of photosynthesis and photoinhibition in marine macroalgae investigated in the laboratory and field. Mar Ecol Prog Ser 97:31–37CrossRefGoogle Scholar
  19. Harrer SL, Reed DC, Holbrook SJ, Miller RJ (2013) Patterns and controls of the dynamics of net primary production by understory macroalgal assemblages in giant kelp forests. J Phycol 49:248–257. doi: 10.1111/jpy.12023 CrossRefPubMedGoogle Scholar
  20. Hepburn CD, Hurd CL, Frew RD (2006) Colony structure and seasonal differences in light and nitrogen modify the impact of sessile epifauna on the giant kelp Macrocystis pyrifera (L.) C Agardh. Hydrobiologia 560:373–384. doi: 10.1007/s10750-005-1573-7 CrossRefGoogle Scholar
  21. Hepburn CD, Holborow JD, Wing SR et al (2007) Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar Ecol Prog Ser 339:99–108. doi: 10.3354/meps339099 CrossRefGoogle Scholar
  22. Hepburn CD, Pritchard DW, Cornwall CE et al (2011) Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Glob Chang Biol 17:2488–2497. doi: 10.1111/j.1365-2486.2011.02411.x CrossRefGoogle Scholar
  23. Hewawasam T, von Blanckenburg F, Schaller M, Kubik P (2003) Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31:597. doi: 10.1130/0091-7613 CrossRefGoogle Scholar
  24. Johansson G, Snoeijs P (2002) Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Mar Ecol Prog Ser 244:63–72. doi: 10.3354/meps244063 CrossRefGoogle Scholar
  25. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol 42:313–349CrossRefGoogle Scholar
  26. Kubler JE, Raven JA (1996a) Inorganic carbon acquisition by red seaweeds grown under dynamic light regimes. Hydrobiologia 326/327:401–406CrossRefGoogle Scholar
  27. Kubler JE, Raven JA (1996b) Nonequilibrium rates of photosynthesis and respiration under dynamic light supply. J Phycol 32:963–969CrossRefGoogle Scholar
  28. Luning K, Dring M. (1979) Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgoländer Wssenschaftliche Meeresuntersuchungen 32:403–424CrossRefGoogle Scholar
  29. Macintyre HL, Kana TM, Anning T, Geider RJ (2002) Review of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38CrossRefGoogle Scholar
  30. Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981CrossRefPubMedGoogle Scholar
  31. Middelboe AL, Sand-Jensen K, Binzer T (2006) Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light. Oecologia 150:464–476. doi: 10.1007/s00442-006-0526-9 CrossRefPubMedGoogle Scholar
  32. Miller SM, Wing SR, Hurd CL (2006) Photoacclimation of Ecklonia radiata (Laminariales, Heterokontophyta) in Doubtful Sound, Fjordland, Southern New Zealand. Phycologia 45:44–52. doi: 10.2216/04-98.1 CrossRefGoogle Scholar
  33. Miller RJ, Harrer S, Reed DC (2012) Addition of species abundance and performance predicts community primary production of macroalgae. Oecologia 168:797–806. doi: 10.1007/s00442-011-2143-5 CrossRefPubMedGoogle Scholar
  34. Millero FJ, Poisson A (1981) International one-atmosphere equation of state of seawater. Deep Sea Res 28A:625–629CrossRefGoogle Scholar
  35. Peckol P, Ramus J (1988) Abundances and physiological properties of deep-water seaweeds from Carolina outer continental shelf. J Exp Mar Bio Ecol 115:25–39. doi: 10.1016/0022-0981(88)90187-6 CrossRefGoogle Scholar
  36. Pritchard DW, Hurd CL, Beardall J, Hepburn CD (2013) Survival in low light: photosynthesis and growth of a red alga in relation to measured in situ irradiance. J Phycol 49:867–879. doi: 10.1111/jpy.12093 PubMedGoogle Scholar
  37. Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. Springer, Berlin, pp 385–412Google Scholar
  38. Raven JA, Hurd CL (2012) Ecophysiology of photosynthesis in macroalgae. Photosynth Res 113:105–125. doi: 10.1007/s11120-012-9768-z CrossRefPubMedGoogle Scholar
  39. Richards DK, Hurd CL, Pritchard DW et al (2011) Photosynthetic response of monospecific macroalgal stands to density. Aquat Biol 13:41–49. doi: 10.3354/ab00349 CrossRefGoogle Scholar
  40. Rodgers KL, Shears NT (2016) Modelling kelp forest primary production using in situ photosynthesis, biomass and light measurements. Mar Ecol Prog Ser 553:67–79. doi: 10.3354/meps11801 CrossRefGoogle Scholar
  41. Ruffin K (1998) The persistence of anthropogenic turbidity plumes in a shallow water Estuary. Estuar Coast Shelf Sci 47:579–592. doi: 10.1006/ecss.1998.0366 CrossRefGoogle Scholar
  42. Schiel DR (1990) Macroalgal assemblages in New Zealand: structure, interactions and demography. Hydrobiologia 192:59–76CrossRefGoogle Scholar
  43. Schwarz A-M, Hawes I, Andrew N et al (2003) Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biol 26:789–799. doi: 10.1007/s00300-003-0556-2 CrossRefGoogle Scholar
  44. Shears NT, Babcock RC (2007) Quantitative description of mainland New Zealand’s shallow subtidal reef communities. 21. Department of ConservationGoogle Scholar
  45. Smale DA, Burrows MT, Evans AJ et al (2016) Linking environmental variables with regional-scale variability in ecological structure and standing stock of carbon within UK kelp forests. Mar Ecol Prog Ser 542:79–95. doi: 10.3354/meps11544 CrossRefGoogle Scholar
  46. Tait L, Schiel DR (2010) Primary productivity of intertidal macroalgal assemblages: comparison of laboratory and in situ photorespirometry. Mar Ecol Prog Ser 416:115–125. doi: 10.3354/meps08781 CrossRefGoogle Scholar
  47. Thrush S, Hewitt J, Cummings V et al (2004) Muddy waters: elevating sediment input to coastal and estuarine habitats. Front Ecol Environ 2:299–306CrossRefGoogle Scholar
  48. Wing SR, Patterson MR (1993) Effects of wave-induced lightflecks in the intertidal zone on photosynthesis in the macroalgae Postelsia palmaeformis and Hedophyllum sessile (Phaeophyceae). Mar Biol 525:519–525CrossRefGoogle Scholar
  49. Wyman M, Fay P (1986) Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria) I. The influence of light quantitiy. Proc R Soc London 227:367–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Matthew J. Desmond
    • 1
    Email author
  • Daniel W. Pritchard
    • 2
    • 3
  • Christopher D. Hepburn
    • 4
  1. 1.Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
  3. 3.Te Ao Tūroa, Te Rūnanga o Ngāi TahuDunedinNew Zealand
  4. 4.Department of Marine ScienceUniversity of OtagoDunedinNew Zealand

Personalised recommendations