Photosynthesis Research

, Volume 132, Issue 2, pp 165–179 | Cite as

Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce

  • Tibor Stolárik
  • Boris Hedtke
  • Jiří Šantrůček
  • Petr Ilík
  • Bernhard Grimm
  • Andrej Pavlovič
Original Article
  • 268 Downloads

Abstract

Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.

Keywords

Chill stress Chlorophyll DPOR Low temperature Protochlorophyllide Norway spruce 

Supplementary material

11120_2017_354_MOESM1_ESM.docx (3.9 mb)
Supplementary material 1 (DOCX 4044 KB)

References

  1. Alawady AE, Grimm B (2005) Tobacco Mg-protoporphyrin IX methyltransferase is involved in inverse activation of Mg-porphyrin and protoheme synthesis. Plant J 41:282–290CrossRefPubMedGoogle Scholar
  2. Apitz J, Nishimura K, Schmied J, Grimm B (2016) Posttranslational control of ALA synthesis includes GluTR degradation by Clp protease and stabilization by GluTR-binding protein. Plant Physiol 170:2040–2051CrossRefPubMedPubMedCentralGoogle Scholar
  3. Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J Photochem Photobiol 43:87–100CrossRefGoogle Scholar
  4. Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bauer C (2004) Regulation of photosystem synthesis in Rhodobacter capsulatus. Photosyn Res 80: 353–360.CrossRefPubMedGoogle Scholar
  6. Breznenová K, Demko V, Pavlovič A, Gálová E, Balážová R, Hudák J (2010) Light-independent accumulation of essential chlorophyll biosynthesis- and photosynthesis-related proteins in Pinus mugo and Pinus sylvestris seedlings. Photosynthetica 48:16–22CrossRefGoogle Scholar
  7. Bröcker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD, Moser J (2010) Crystal structure of the nitrogenase-like dark-operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 285:27336–27345CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38CrossRefPubMedGoogle Scholar
  9. Dawson RCM, Elliott DC, Elliott WH, Jones KM (1986) Data for biochemical research. 1986, 3rd edn. Oxford Science PublicationsGoogle Scholar
  10. Demko V, Pavlovič A, Valková D, Slováková Ľ, Grimm B, Hudák J (2009) A novel insight into regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Planta 230:165–176CrossRefPubMedGoogle Scholar
  11. Demko V, Pavlovič A, Hudák J (2010) Gabaculine alters plastid development and differentially affects abundance of plastid-encoded DPOR and nuclear-encoded GluTR and FLU-like proteins in spruce cotyledons. J Plant Physiol 167:693–700CrossRefPubMedGoogle Scholar
  12. Dražič G, Bogdanovič M (2000) Gabaculine does not inhibit cytokinin-stimulated biosynthesis of chlorophyll in Pinus nigra seedlings in the dark. Plant Sci 154:23–29CrossRefPubMedGoogle Scholar
  13. Forreiter C, Apel K (1993) Light-independent and light-dependent protochlorophyllide-reducing activities and two distnict NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (Pinus mugo). Planta 190:536–545CrossRefPubMedGoogle Scholar
  14. Fujita Y, Bauer CE (2003) The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish K, Smith K, Guilard R (eds) Porphyrin handbook, vol 13, chlorophylls and bilins: biosynthesis, synthesis, and degradation. Academic Press, San Diego, pp 109–156Google Scholar
  15. Gabruk M, Mysliwa-Kurdziel B (2015) Light-dependent protochlorophyllide oxidoreductase: Phylogeny, regulation, and catalytic properties. BioChemistry 54:5255–5262CrossRefPubMedGoogle Scholar
  16. Gabruk M, Grzyb J, Kruk J, Mysliwa-Kurdziel B (2012) Light-dependent and light-independent protochlorophyllide oxidoreductases share similar sequence motifs—In silico studies. Photosynthetica 50:529–540CrossRefGoogle Scholar
  17. Garrone A, Archipowa N, Zipfel PF, Hermann G, Dietzek B (2015) Plant protochlorophyllide oxidoreductases A and B—Catalytic efficiency and initial reaction steps. J Biol Chem 290:28530–28539CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gehring H, Kasemir H, Mohr H (1977) The capacity of chlorophyll-a biosynthesis in the mustard seedling cotyledons as modulated by phytochrome and circadian rhythmicity. Planta 133:295–302CrossRefPubMedGoogle Scholar
  19. Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Grime JP, Grace J, Kana TM, La Roche J, Long SP, Osborne BA, Platt T, Prentice IC, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet Earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Change Biol 7:849–882.CrossRefGoogle Scholar
  20. Goslings D, Meskauskiene R, Kim CH, Lee KP, Nater M, Apel K (2004) Concurrent interaction of heme and FLU with Glu tRNA reductase (HEMA1) the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J 40:957–967CrossRefPubMedGoogle Scholar
  21. Henry W (1803) Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Phil Trans R Soc Lond 93:29–274CrossRefGoogle Scholar
  22. Hobber JK, Argyroudi-Akoyunoglou JH (2004) Assembly of light-harvesting complexes of photosystem II and the role of chlorophyll b. In: Papageorgiou C, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Netherlands, pp 679–712CrossRefGoogle Scholar
  23. Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92:3254–3258CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huang L, Bonner BA, Castelfranco PA (1989) Regulation of 5-aminolevulinic acid (ALA) synthesis in developing chloroplasts. Plant Physiol 90:1003–1008CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jansson S, Virgin I, Gustafsson P, Andersson B, Öquist G (1992) Light-induced changes of photosystem II activity in dark-grown Scots pine seedlings. Physiol Plantarum 84:6–12.CrossRefGoogle Scholar
  26. Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, Svensson V, Wirtz A, von Haeseler A, Jaeger KE, Drepper T, Krauss U (2014) Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol Microbiol 93:1066–1078CrossRefPubMedGoogle Scholar
  27. Kauss D, Bischof S, Steiner S, Apel K, Meskauskiene R (2012) FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of Mg++-branch of this pathway. FEBS Lett 586:211–216CrossRefPubMedGoogle Scholar
  28. Koski VM, Smith JHC (1948) The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. J Am Chem Soc 70:3558–3562CrossRefPubMedGoogle Scholar
  29. Kouřil R, Nosek L, Bartoš J, Boekema EJ, Ilík P (2016) Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups—Break-up of current dogma. New Phytol 210:808–814CrossRefPubMedGoogle Scholar
  30. Kruse E, Mock HP, Grimm B (1995) Reduction of coproporphyrinogen oxidase level by antisense RNA-synthesis leads to deregulated gene-expression of plastid proteins and affects the oxidative defense system. EMBO Journal 14:3712–3720PubMedPubMedCentralGoogle Scholar
  31. Kruse E, Grimm B, Beator J, Kloppstech K (1997) Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. Planta 202:235–241CrossRefGoogle Scholar
  32. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382CrossRefGoogle Scholar
  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  34. Mariani P, De Carli EM, Rascio N, Baldan B, Casadoro G, Gennari G, Bodner M, Larcher W (1990) Synthesis of chlorophyll and photosynthetic competence in etiolated and greening seedlings of Larix decidua as compared with Picea abies. J Plant Physiol 137:5–14CrossRefGoogle Scholar
  35. Meskauskiene R, Nater M, Goslings D, Kessler F, Camp R, Apel K (2001) FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mohanty S, Grimm B, Tripathy B (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692–699CrossRefPubMedGoogle Scholar
  37. Mukai Y, Tazaki K, Fujii T, Yamamoto N (1992) Light-independent expression of three photosynthetic genes cab, rbcS and rbcL in coniferous plants. Plant Cell Physiol 33:859–866Google Scholar
  38. Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Temiaki H, Kurisu G, Fujita Y (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–114CrossRefPubMedGoogle Scholar
  39. Muramatsu S, Kojima K, Igasaki T, Azumi Y, Shinohara K (2001) Inhibition of light-independent synthesis of chlorophyll in pine cotyledons at low temperature. Plant Cell Physiol 42:868–872CrossRefPubMedGoogle Scholar
  40. Nakatani HS, Ke B, Dolan E, Arntzen CJ (1984) Identity of the Photosystem II reaction center polypeptide. Biochim Biophys Acta 765:347–352CrossRefGoogle Scholar
  41. Nomata J, Terauchi K, Fujita Y (2016) Stoichiometry of ATP hydrolysis and chlorophyllide formation of dark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus. Biochem Biophys Res Commun 470:704–709.CrossRefPubMedGoogle Scholar
  42. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-Ch, Scofield DG et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584CrossRefPubMedGoogle Scholar
  43. Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H, Takamiya K. (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FESB Lett 474:133–136.CrossRefGoogle Scholar
  44. Óquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355CrossRefPubMedGoogle Scholar
  45. Ou K, Adamson H (1995) Chlorophyll accumulation in cotyledons, hypocotyls and primary needles of Pinus pinea seedlings in light and dark. Physiol Plantarum 93:719–724.CrossRefGoogle Scholar
  46. Papenbrock J, Grimm B (2001) Regulatory network of tetrapyrrole biosynthesis—Studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 213:667–681CrossRefPubMedGoogle Scholar
  47. Papenbrock J, Mock HP, Kruse E, Grimm B (1999) Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208:264–273CrossRefGoogle Scholar
  48. Pavlovič A, Demko V, Durchan M, Hudák J (2009) Feeding with aminolevulinic acid increased chlorophyll content in Norway spruce (Picea abies) in the dark. Photosynthetica 47:510–516CrossRefGoogle Scholar
  49. Pavlovič A, Stolárik T, Nosek L, Kouřil R, Ilík P (2016) Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings. BBA-Bioenerg 1857:799–809.CrossRefGoogle Scholar
  50. Reinbothe Ch, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624CrossRefPubMedGoogle Scholar
  51. Richter A, Peter E, Pors Y, Lorenzen S, Grimm B, Czarnecki O (2010) Rapid dark repression of 5-aminolevulinic acid synthesis in green barley leaves. Plant Cell Physiol 51:670–681CrossRefPubMedGoogle Scholar
  52. Savitch LV, Ivanov AG, Krol M, Sprott DP, Öquist G, Huner NPA (2010) Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of Lodgepole Pine is oxygen dependent. Plant Cell Physiol 51:1555–1570CrossRefPubMedGoogle Scholar
  53. Schägger H (2006) Tricine-SDS-Page. Nat Protoc 1:16–22CrossRefPubMedGoogle Scholar
  54. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  55. Schoefs B, Franck F (2003) Protochlorophyllide reduction: mechanism and evolution. Photochem Photobiol 78:543–557CrossRefPubMedGoogle Scholar
  56. Selstam E, Widell A, Johansson LB (1987) A comparison of prolamellar bodies from wheat, Scots pine and Jeffrey pine. Pigment spectra and properties of protochlorophyllide oxidoreductase. Physiol Plantarum 70:209–214.CrossRefGoogle Scholar
  57. Shinohara K, Ono T, Inoue Y (1992) Photoactivation of oxygen evolving enzyme in dark-grown pine cotyledons: relationship between assembly of photosystem II proteins and integration of manganese and calcium. Plant Cell Physiol 33:281–289CrossRefGoogle Scholar
  58. Skinner JS, Timko MP (1998) Loblolly pine (Pinus taeda) contains multiple expressed genes encoding light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Plant Cell Physiol 39:795–806CrossRefPubMedGoogle Scholar
  59. Skinner JS, Timko MP (1999) Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine. Plant Mol Biol 39:577–592CrossRefPubMedGoogle Scholar
  60. Stabel P, Sundås A, Engström P (1991) Cytokinin treatment of embryos inhibits the synthesis of chloroplast proteins in Norway spruce. Planta 183:520–527CrossRefPubMedGoogle Scholar
  61. Su Q, Frick G, Armstrong G, Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805–813CrossRefPubMedGoogle Scholar
  62. Suzuki T, Takio S, Yamamoto I, Satoh T (2001) Characterization of cDNA of the liverwort phytochrome gene, and phytochrome involvement in the light-dependent and light-independent protochlorophyllide oxidoreductase gene expression in Marchantia paleacea var. diptera. Plant Cell Physiol 42:576–582CrossRefPubMedGoogle Scholar
  63. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346CrossRefPubMedGoogle Scholar
  64. Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858CrossRefGoogle Scholar
  65. Ueda M, Tanaka A, Sugimoto K, Shikanai T, Nishimura Y (2014) chlB requirement for chlorophyll biosynthesis under short photoperiod in Marchantia polymorpha L. Genome Biol Evol 6:620–628CrossRefPubMedPubMedCentralGoogle Scholar
  66. van Huystee RB, Hodgins RRW (1989) Chlorophyll synthesis from protochlorophyll(ide) in chill-stressed maize (Zea mays L.). J Exp Bot 40:431–435CrossRefGoogle Scholar
  67. Xue X, Wang Q, Qu Y, Wu H, Dong F, Cao H, Wang H-L, Xiao J, Shen Y, Wan Y (2017) Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness. New Phytol 213:300–313CrossRefPubMedGoogle Scholar
  68. Yamamoto H, Kurumiya S, Ohashi R, Fujita Y (2009) Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 50:1663–1673CrossRefPubMedGoogle Scholar
  69. Yamamoto H, Kurumiya S, Ohashi R, Fujita Y (2011) Functional evaluation of a nitrogenase-like protochlorophyllide reductase encoded by the chloroplast DNA of Physcomitrella patens in the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 52:1983–1993CrossRefPubMedGoogle Scholar
  70. Yamazaki S, Nomata J, Fujita Y (2006) Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiol 142:911–922CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yaronskaya E, Vershilovskaya I, Poers Y, Alawady AE, Averina N, Grimm B (2006) Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta 224:700–709CrossRefPubMedGoogle Scholar
  72. Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA 106:21431–21436CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Tibor Stolárik
    • 1
  • Boris Hedtke
    • 2
  • Jiří Šantrůček
    • 3
  • Petr Ilík
    • 1
  • Bernhard Grimm
    • 2
  • Andrej Pavlovič
    • 1
  1. 1.Faculty of Science, Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University in OlomoucOlomoucCzech Republic
  2. 2.Institute of Biology/Plant PhysiologyHumboldt-University BerlinBerlinGermany
  3. 3.Faculty of Science, Department of Experimental Plant BiologyUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations