Photosynthesis Research

, Volume 131, Issue 3, pp 255–266 | Cite as

Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study

  • David Bína
  • Zdenko Gardian
  • Miroslava Herbstová
  • Radek Litvín
Original Article


Photosystem I (PSI) is a multi-subunit integral pigment–protein complex that performs light-driven electron transfer from plastocyanin to ferredoxin in the thylakoid membrane of oxygenic photoautotrophs. In order to achieve the optimal photosynthetic performance under ambient irradiance, the absorption cross section of PSI is extended by means of peripheral antenna complexes. In eukaryotes, this role is played mostly by the pigment–protein complexes of the LHC family. The structure of the PSI-antenna supercomplexes has been relatively well understood in organisms harboring the primary plastid: red algae, green algae and plants. The secondary endosymbiotic algae, despite their major ecological importance, have so far received less attention. Here we report a detailed structural analysis of the antenna-PSI association in the stramenopile alga Nannochloropsis oceanica (Eustigmatophyceae). Several types of PSI-antenna assemblies are identified allowing for identification of antenna docking sites on the PSI core. Instances of departure of the stramenopile system from the red algal model of PSI-Lhcr structure are recorded, and evolutionary implications of these observations are discussed.


Photosystem I Electron microscopy Light-harvesting complex Nannochloropsis Stramenopila 







The primary donor of the photosystem I reaction center




Phenazine methosulfate


Reaction center


Outer antenna of PSI in cyanobacteria


Outer antenna of PSI in chlorophyll b-containing cyanobacteria

Supplementary material

11120_2016_315_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2565 kb)


  1. Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58CrossRefPubMedGoogle Scholar
  2. Basso S, Simionato D, Gerotto C, Segalla A, Giacometti GM, Morosinotto T (2014) Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I. Biochim Biophys Acta 1837:306–314CrossRefPubMedGoogle Scholar
  3. Bibby TS, Nield J, Barber J (2001) Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412:743–745CrossRefPubMedGoogle Scholar
  4. Bibby TS, Mary I, Nield J, Partensky F, Barber J (2003) Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424:1051–1054CrossRefPubMedGoogle Scholar
  5. Bína D, Litvín R, Vacha F, Siffel P (2006) New multichannel kinetic spectrophotometer–fluorimeter with pulsed measuring beam for photosynthesis research. Photosynth Res 88:351–356CrossRefPubMedGoogle Scholar
  6. Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837:802–810CrossRefPubMedGoogle Scholar
  7. Bína D, Herbstová M, Gardian Z, Vácha F, Litvín R (2016) Novel structural aspect of the diatom thylakoid membrane: lateral segregation of photosystem I under red-enhanced illumination. Sci Rep 6:25583CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boekema EJ, Dekker JP, Vanheel MG, Rogner M, Saenger W, Witt I, Witt HT (1987) Evidence for a trimeric organization of the photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217:283–286CrossRefGoogle Scholar
  9. Boekema EJ, Wynn RM, Malkin R (1990) The structure of spinach photosystem I studied by electron microscopy. Biochim Biophys Acta 1017:49–56CrossRefGoogle Scholar
  10. Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J, Rogner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92:175–179CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J (2001a) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412:745–748CrossRefPubMedGoogle Scholar
  12. Boekema EJ, Jensen PE, Schlodder E, van Breemen JFL, van Roon H, Scheller HV, Dekker JP (2001b) Green plant photosystem I binds light-harvesting complex I on one side of the complex. Biochemistry 40:1029–1036CrossRefPubMedGoogle Scholar
  13. Büchel C, Wilhelm C (1993) Isolation and characterization of a photosystem I-associated antenna (LHC I) and a photosystem I-core complex from the chlorophyll c-containing alga Pleurochloris meiringensis (Xanthophyceae). J Photochem Photobiol B Biol 20:87–93CrossRefGoogle Scholar
  14. Büchel C, Wilhelm C, Hauswirth N, Wild A (1992) Evidence for a lateral heterogeneity by patch-work like areas enriched in photosystem I complexes in the three thylakoid lamellae of Pleurochloris meiringensis (Xanthophyceae). J Crypt Bot 2:375–386Google Scholar
  15. Bumba L, Prášil O, Vácha F (2005) Antenna ring around trimeric photosystem I in chlorophyll b containing cyanobacterium Prochlorothrix hollandica. Biochim Biophys Acta 1708:1–5CrossRefPubMedGoogle Scholar
  16. Busch A, Hippler M (2011) The structure and function of eukaryotic photosystem I. Biochim Biophys Acta 1807:864–877CrossRefPubMedGoogle Scholar
  17. Busch A, Nield J, Hippler M (2010) The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Plant J 62:886–897CrossRefPubMedGoogle Scholar
  18. Busch A, Petersen J, Webber-Birungi M-T, Powikrowska M, Lassen LMM, Naumann-Busch B, Nielsen AZ, Ye J, Boekema EJ, Jensen ON, Lunde C, Jensen PE (2013) Composition and structure of photosystem I in the moss Physcomitrella patens. J Exp Bot 64:2689–2699CrossRefPubMedPubMedCentralGoogle Scholar
  19. de la Rosa-Trevín JM, Otón J, Marabini R, Zaldívar A, Vargas J, Carazo JM, Sorzano COS (2013) Xmipp 3.0: an improved software suite for image processing in electron microscopy. J Struct Biol 184:321–328CrossRefPubMedGoogle Scholar
  20. Dittami SM, Michel G, Collén J, Boyen C, Tonon T (2010) Chlorophyll-binding proteins revisited—a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol 10:365CrossRefPubMedPubMedCentralGoogle Scholar
  21. Drop B, Webber-Birungi M, Fusetti F, Kouřil R, Redding KE, Boekema EJ, Croce R (2011) Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J Biol Chem 286:44878–44887CrossRefPubMedPubMedCentralGoogle Scholar
  22. Drop B, Yadav SKN, Boekema EJ, Croce R (2014a) Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Plant J 78:181–191CrossRefPubMedGoogle Scholar
  23. Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R (2014b) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta 1837:63–72CrossRefPubMedGoogle Scholar
  24. Gantt E, Grabowski B, Cunningham FX (2003) Antenna systems of red algae: phycobilisomes with photosystem II and chlorophyll complexes with photosystem I. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer, Dordrecht, pp 307–322CrossRefGoogle Scholar
  25. Gardian Z, Bumba L, Schrofel A, Herbstová M, Nebesářová J, Vácha F (2007) Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts. Biochim Biophys Acta 1767:725–731CrossRefPubMedGoogle Scholar
  26. Gardian Z, Tichý J, Vácha F (2011) Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile. Photosynth Res 108:25–32CrossRefPubMedGoogle Scholar
  27. Germano M, Yakushevska AE, Keegstra W, van Gorkom HJ, Dekker JP, Boekema EJ (2002) Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett 525:121–125CrossRefPubMedGoogle Scholar
  28. Grouneva I, Rokka A, Aro E-M (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353CrossRefPubMedGoogle Scholar
  29. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefPubMedGoogle Scholar
  30. Herbstová M, Bína D, Koník P, Gardian Z, Vácha F, Litvín R (2015) Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1847:534–543CrossRefPubMedGoogle Scholar
  31. Ikeda Y, Yamagishi A, Komura M, Suzuki T, Dohmae N, Shibata Y, Itoh S, Koike H, Satoh K (2013) Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. Biochim Biophys Acta 1827:529–539CrossRefPubMedGoogle Scholar
  32. Kargul J, Nield J, Barber J (2003) Three-dimensional reconstruction of a light-harvesting complex I photosystem I (LHCI-PSI) supercomplex from the green alga Chlamydomonas reinhardtii. J Biol Chem 278:16135–16141CrossRefPubMedGoogle Scholar
  33. Keşan G, Litvín R, Bína D, Durchan M, Šlouf V, Polívka T (2016) Efficient light-harvesting using non-carbonyl carotenoids: energy transfer dynamics in the VCP complex from Nannochloropsis oceanica. Biochim Biophys Acta 1857:370CrossRefPubMedGoogle Scholar
  34. Komenda J, Knoppová J, Kopečná J, Sobotka R, Halada P, Yu J, Nickelsen J, Boehm M, Nixon PJ (2012a) The Psb27 assembly factor binds to the CP43 complex of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 158:476–486CrossRefPubMedGoogle Scholar
  35. Komenda J, Sobotka R, Nixon PJ (2012b) Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251CrossRefPubMedGoogle Scholar
  36. Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim Biophys Acta 1837:734–743CrossRefPubMedGoogle Scholar
  37. Kouřil R, Arteni AA, Lax J, Yeremenko N, D’Haene S, Rögner M, Matthijs HCP, Dekker JP, Boekema EJ (2005a) Structure and functional role of supercomplexes of IsiA and photosystem I in cyanobacterial photosynthesis. FEBS Lett 579:3253–3257CrossRefPubMedGoogle Scholar
  38. Kouřil R, van Oosterwijk N, Yakushevska AE, Boekema EJ (2005b) Photosystem I: a search for green plant trimers. Photochem Photobiol Sci 4:1091–1094CrossRefPubMedGoogle Scholar
  39. Kouřil R, Zygadlo A, Arteni AA, de Wit CD, Dekker JP, Jensen PE, Scheller HV, Boekema EJ (2005c) Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 33:10935–10940Google Scholar
  40. Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12CrossRefPubMedGoogle Scholar
  41. Kouřil R, Nosek L, Bartoš J, Boekema EJ, Ilík P (2016) Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups—break-up of current dogma. New Phytol 210:808–814CrossRefPubMedGoogle Scholar
  42. Li M, Semchonok DA, Boekema EJ, Bruce BD (2014) Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp. TS-821. Plant Cell 26:1230–1245CrossRefPubMedPubMedCentralGoogle Scholar
  43. Litvín R, Bína D, Herbstová M, Gardian Z (2016) Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica. Photosynth Res 130(1):137–150CrossRefPubMedGoogle Scholar
  44. Lucinski R, Schmid VHR, Jansson S, Klimmek F (2006) Lhca5 interaction with plant photosystem I. FEBS Lett 580:6485–6488CrossRefPubMedGoogle Scholar
  45. Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem I super-complex at 2.8 Å resolution. eLife 4:e07433CrossRefPubMedPubMedCentralGoogle Scholar
  46. Neilson JAD, Durnford DG (2010) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 106:57–71CrossRefPubMedGoogle Scholar
  47. Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pan H, Šlapeta J, Carter D, Chen M (2012) Phylogenetic analysis of the light-harvesting system in Chromera velia. Photosynth Res 111(1–2):19–28CrossRefPubMedGoogle Scholar
  49. Qin X, Suga M, Kuang T, Shen JR (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995CrossRefPubMedGoogle Scholar
  50. Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231CrossRefPubMedGoogle Scholar
  51. Scheres SHW (2012a) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530CrossRefPubMedPubMedCentralGoogle Scholar
  52. Scheres SHW (2012b) A Bayesian view on cryo-EM structure determination. J Mol Biol 415:406–418CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, Vlček Č, Lang BF, Oborník M, Worden AZ, Eliáš M (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 5:10134CrossRefPubMedPubMedCentralGoogle Scholar
  54. Takahashi T, Inoue-Kashino N, Ozawa S-I, Takahashi Y, Kashino Y, Satoh K (2009) Photosystem II complex in vivo is a monomer. J Biol Chem 284:15598–15606CrossRefPubMedPubMedCentralGoogle Scholar
  55. Thangaraj B, Jolley CC, Sarrou I, Bultema JB, Greyslak J, Whitelegge JP, Lin S, Kouřil R, Subramanyam R, Boekema EJ, Fromme P (2011) Efficient light harvesting in a dark, hot, acidic environment: the structure and function of PSI-LHCI from Galdieria sulphuraria. Biophys J 100:135–143CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tichý J, Gardian Z, Bína D, Koník P, Litvín R, Herbstová M, Pain A, Vácha F (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim Biophys Acta 1827:723–729CrossRefPubMedGoogle Scholar
  57. Veith T, Büchel C (2007) The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Biochim Biophys Acta 1767:1428–1435CrossRefPubMedGoogle Scholar
  58. Watanabe M, Iwai M, Narikawa R, Ikeuchi M (2009) Is the photosystem II complex a monomer or a dimer? Plant Cell Physiol 50:1674–1680CrossRefPubMedGoogle Scholar
  59. Wientjes E, Oostergetel GT, Jansson S, Boekema EJ, Croce R (2009) The role of Lhca complexes in the supramolecular organization of higher plant photosystem I. J Biol Chem 284:7803–7810CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yoon HS, Muller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Plant Molecular BiologyBiology Centre CASČeské BudějoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations