Photosynthesis Research

, Volume 131, Issue 2, pp 145–157 | Cite as

Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among down-regulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms

  • Edgardo CrucesEmail author
  • Ralf Rautenberger
  • Yesenia Rojas-Lillo
  • Victor Mauricio Cubillos
  • Nicolás Arancibia-Miranda
  • Eduardo Ramírez-Kushel
  • Iván Gómez
Original Article


Intertidal macroalgae are constantly subjected to high variations in the quality and quantity of incident irradiance that can eventually generate detrimental effect on the photosynthetic apparatus. The success of these organisms to colonize the stressful coastal habitat is mainly associated with the complexity of their morphological structures and the efficiency of the anti-stress mechanisms to minimize the physiological stress. Lessonia spicata (Phaeophyceae), a brown macroalga, that inhabits the intertidal zone in central–southern Chile was studied in regard to their physiological (quantum yield, electron transport rate, pigments) and biochemical (phlorotannins content, antioxidant metabolism, oxidative stress) responses during a daily light cycle under natural solar radiation. Major findings were that F v/F m, photosynthetic parameters (ETRmax, alpha, E k) and pigments in L. spicata showed an inverse relationship to the diurnal changes in solar radiation. Phlorotannins levels and antioxidant activity showed their highest values in treatment that included UV radiation. There was an increase in SOD and APX in relation at light stress, with a peak in activity between 5.2 and 10.1 W m−2 of biologically effective dose. The increase in peroxidative damage was proportional to light dose. These results indicated that different light doses can trigger a series of complementary mechanisms of acclimation in L. spicata based on: (i) down-regulation of photochemistry activity and decrease in concentration of photosynthetic pigments; (ii) induction of phenolic compounds with specific UV-screening functions; and (iii) reactive oxygen species (ROS) scavenging activity via complementary repair of the oxidative damage through increased activity of antioxidant enzymes and potentially increased amounts of phenolic compounds.


Photosynthesis Lessonia spicata UV radiation Photoinhibition Phlorotannins Antioxidant enzymes 



This study was supported by the FONDECYT Grants No. 3130516 to E.C and FONDECYT 1130794 to I.G. and Basal Funding for Scientific and Technological Centers under Project FB0807 CEDENNA to E.C. We are especially grateful to Drs. C. Hichi and B. Riggita for their valuable comments, which substantially improved the manuscript.


  1. Adams WW III, Zarter CR, Mueh KE, Amiard V, Demmig-Adams B (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW III, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 49–64CrossRefGoogle Scholar
  2. Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Bioch 72:35–45CrossRefGoogle Scholar
  3. Aguilera J, Dumrnermuth A, Karsten U, Schriek R, Wiencke C (2002) Enzymatic defences against photooxidative stress induced by ultraviolet radiation in Arctic marine macroalgae. Polar Biol 25:432–444Google Scholar
  4. Albro PW, Corbett JT, Schroeder JL (1986) Application of the thiobarbiturate assay to the measurement of lipid peroxidation products in microsomes. J Biochem Bioph Meth 13:185–194CrossRefGoogle Scholar
  5. Allen DJ, McKee IF, Farage PK, Baker NR (1997) Analysis of limitations to CO2 assimilation on exposure of leaves of Brassica napus cultivars to UV-B. Plant Cell Environ 20:633–640CrossRefGoogle Scholar
  6. Alscher R, Erturk N, Heath L (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341CrossRefPubMedGoogle Scholar
  7. Betancor S, Domínguez B, Tuya F, Figueroa FL, Haroun R (2015) Photosynthetic performance and photoprotection of Cystoseira humilis (Phaeophyceae) and Digenea simplex (Rhodophyceae) in an intertidal rock pool. Aquat Bot 121:16–25CrossRefGoogle Scholar
  8. Bischof K, Rautenberger R (2012) Seaweed responses to environmental stress: reactive oxygen and antioxidative strategies. In: Wiencke C, Bischof K (eds) Seaweed biology. Novel insights into ecophysiology, ecology and utilization. Ecol Stud 219. Springer, Berlin, pp 109–132Google Scholar
  9. Bischof K, Hanelt D, Wiencke C (1998) UV-radiation can affect depth-zonation of Antarctic macroalgae. Mar Biol 131:597–605CrossRefGoogle Scholar
  10. Bischof K, Peralta G, Krabs G, van de Poll WH, Perez-Llorens JL, Breeman AM (2002a) Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain. J Exp Bot 53:2411–2421CrossRefPubMedGoogle Scholar
  11. Bischof K, Kräbs G, Wiencke C, Hanelt D (2002b) Solar ultraviolet radiation affects the activity of ribulose-1,5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophyll cycle pigments in the intertidal green alga Ulva lactuca L. Planta 215:502–509CrossRefPubMedGoogle Scholar
  12. Bischof K, Janknegt PJ, Buma AG, Rijstenbil JW, Peralta G, Breeman AM (2003) Oxidative stress and enzymatic scavenging of superoxide radicals induced by solar UVB radiation in Ulva canopies from southern Spain. Sci Mar 67:353–359CrossRefGoogle Scholar
  13. Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166CrossRefGoogle Scholar
  14. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  15. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30CrossRefGoogle Scholar
  16. Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen G-X, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998Google Scholar
  18. Cheng Z, Ren J, Li Y, Chang W, Chen Z (2002) Phenolic antioxidants: electro-chemical behavior and the mechanistic elements underlying their anodic oxidation reaction. Redox Rep 7:395–402CrossRefPubMedGoogle Scholar
  19. Chowdhury MTH, Cho JY, Ahn D-H, Hon Y-K (2015) Methyl jasmonate enhances phlorotannin production in the brown seaweed Ecklonia cava. J Appl Phycol 27:1651–1656CrossRefGoogle Scholar
  20. Collén J, Davison I (1999) Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Environ 22:1143–1151CrossRefGoogle Scholar
  21. Connan S, Goulard F, Stiger V, Deslandes E, Gall E (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot Mar 47:410–416CrossRefGoogle Scholar
  22. Connan S, Deslandes E, Ar Gall E (2007) Influence of day-night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J Exp Mar Biol Ecol 349:359–369CrossRefGoogle Scholar
  23. Cruces E, Huovinen P, Gómez I (2012) Phlorotannin and antioxidant responses upon short-term exposure to UV radiation and elevated temperature in three South Pacific kelps. Photochem Photobiol 88:58–66CrossRefPubMedGoogle Scholar
  24. Cruces E, Huovinen P, Gómez I (2013) Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar Biol 160:1–13CrossRefGoogle Scholar
  25. Cruces E, Rojas-Lillo Y, Ramírez-Kushel E, Atala E, López-Alarcón C, Lissi E, Gómez I (2016) Comparison of different techniques for the preservation and extraction of phlorotannins in the kelp Lessonia spicata (Phaeophyceae): assays of DPPH, ORAC-PGR, and ORAC-FL as testing methods. J Appl Phycol 28:573–580CrossRefGoogle Scholar
  26. Cullen JJ, Neale PJ (1996) Effects of ozone depletion on aquatic ecosystems. In: Häder D-P (ed) The effects of ozone depletion on aquatic ecosystems. RG Landes, Austin, pp 97–118Google Scholar
  27. Cullen JJ, Neale PJ, Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:646–650CrossRefPubMedGoogle Scholar
  28. Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Phys 43:599–626CrossRefGoogle Scholar
  29. Dring M (2005) Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. Adv Bot Res 43:175–207CrossRefGoogle Scholar
  30. Figueroa FL, Domínguez-González B, Korbee N (2014) Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar Environ Res 97:30–38CrossRefPubMedGoogle Scholar
  31. Flores-Molina MR, Rautenberger R, Muñoz P, Huovinen P, Gómez I (2016) Stress tolerance of the endemic antarctic brown alga Desmarestia anceps to UV radiation and temperature is mediated by high concentrations of phlorotannins. Photochem Photobiol. doi: 10.1111/php.12580 PubMedGoogle Scholar
  32. Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964CrossRefPubMedGoogle Scholar
  33. Franklin LA, Osmond CB, Larkum AWD (2003) Photoinhibition, UV-B and algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in Algae. Kluwer Academic Publishers, Dordrecht, pp 351–384CrossRefGoogle Scholar
  34. Gevaert F, Creach A, Davoult D, Holl A-C, Seuront L, Lemoine Y (2002) Photoinhibition and seasonal photosynthetic performance of the seaweed Laminaria saccharina during a simulated tidal cycle: chlorophyll fluorescence measurements and pigment analysis. Plant Cell Environ 25:859–872CrossRefGoogle Scholar
  35. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930CrossRefGoogle Scholar
  36. Gómez I, Huovinen P (2010) Induction of phlorotannins during UV exposure mitigates inhibition of photosynthesis and DNA damage in the kelp Lessonia nigrescens. Photochem Photobiol 86:1056–1063CrossRefPubMedGoogle Scholar
  37. Gómez I, Huovinen P (2011) Morpho-functional patterns and zonation of South Chilean seaweeds: the importance of photosynthetic and bio-optical traits. Mar Ecol Prog Ser 422:77–91CrossRefGoogle Scholar
  38. Gómez I, Huovinen P (2012) Morpho-functionality of carbon metabolism in seaweeds. In: Wiencke C, Bischof K (eds) Seaweed biology. Novel insights into ecophysiology, ecology and utilization. Ecol Stud 219. Springer, Berlin, pp 25–46Google Scholar
  39. Gómez I, Figueroa F, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S (2004) Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Prog Ser 270:103–116CrossRefGoogle Scholar
  40. Gómez I, Orostegui M, Huovinen P (2007) Morpho-functional patterns of photosynthesis in the south pacific kelp Lessonia nigrescens: effects of UV radiation on 14C fixation and primary photochemical reactions. J Phycol 43:55–64CrossRefGoogle Scholar
  41. Gómez I, Español S, Véliz K, Huovinen P (2016) Spatial distribution of phlorotannins and its relationship with photosynthetic UV tolerance and allocation of storage carbohydrates in blades of the kelp Lessonia spicata. Mar Biol 163:1–14CrossRefGoogle Scholar
  42. González A, Beltrán J, Hiriart-Bertrand L, Flores V, de Reviers B, Correa JA, Santelices B (2012) Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J Phycol 48:1153–1165CrossRefPubMedGoogle Scholar
  43. Gravot A, Dittami SM, Rousvoal S, Lugan R, Eggert A, Collén J, Boyen C, Bouchereau A, Tonon T (2010) Diurnal oscillations of metabolite abundances and gene analysis provide new insights into central metabolic processes of the brown alga Ectocarpus siliculosus. New Phytol 188:98–110CrossRefPubMedGoogle Scholar
  44. Häder D, Figueroa F (1997) Photoecophysiology of marine macroalgae. Photochem Photobiol 66:1–14CrossRefGoogle Scholar
  45. Hanelt D, Figueroa FL (2012) Physiological and photomorphogenic effects of light on marine macrophytes. In: Wiencke C, K Bischof (eds) Seaweed biology. Novel insights into ecophysiology, ecology and utilization, Springer, Heidelberg, Ecol Stud 219, pp. 3–23Google Scholar
  46. Hanelt D, Li J, Nultsch W (1994) Tidal dependence of photoinhibition in marine macrophytes of South China Sea. Botanica Acta 107:66–72CrossRefGoogle Scholar
  47. Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:55–266CrossRefGoogle Scholar
  48. Henley WJ, Dunton KH (1995) A seasonal comparison of carbon, nitrogen, and pigment content in Laminaria solidungula and L. saccharina (Laminariales, Phaeophyta) in the Alaskan Arctic. J Phycol 31:325–331CrossRefGoogle Scholar
  49. Henry B, Van Alstyne K (2004) Effects of UV radiation on growth and phlorotannins in Fucus gardneri (Phaeophyceae) juveniles and embryos. J Phycol 40:527–533CrossRefGoogle Scholar
  50. Hou X, Hou HJ (2013) Roles of manganese in photosystem II dynamics to irradiations and temperatures. Front Biol 8:312–322CrossRefGoogle Scholar
  51. Hou X, Raposo A, Hou HJ (2013) Response of chlorophyll d-containing cyanobacterium Acaryochloris marina to UV and visible irradiations. Photosynth Res 117:497–507CrossRefPubMedGoogle Scholar
  52. Huovinen P, Gómez I, Lovengreen C (2006) A five-year study of solar ultraviolet radiation in southern Chile (39°S): potential impact on physiology of coastal marine algae? Photochem Photobiol 82:515–522CrossRefPubMedGoogle Scholar
  53. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jassby A, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  55. Jones L, Kok B (1966) Photoinhibition of chloroplast reactions: I. Kinetics and action spectra. Plant Physiol 41:1037–1043CrossRefPubMedPubMedCentralGoogle Scholar
  56. Karsten U, Wulff A, Roleda MY, Müller R, Steinhoff FS, Fredersdorf J, Wiencke C (2009) Physiological responses of polar benthic algae to ultraviolet radiation. Bot Mar 52:639–654CrossRefGoogle Scholar
  57. Koch K, Thiel M, Hagen W, Graeve M, Gómez I, Jofre D, Hofmann LC, Tala F, Bischof K (2016) Short- and long-term acclimation patterns of the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) along a depth gradient. J Phycol 52:260–273CrossRefPubMedGoogle Scholar
  58. Koivikko R, Loponen J, Honkanen T, Jormalainen V (2005) Contents of cytoplasmic, cell-wall-bound and exudes phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J Chem Ecol 31:195–209CrossRefPubMedGoogle Scholar
  59. Krause G, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  60. Kremer BP (1984) Carbohydrate reserve and dark carbon fixation in the brown macroalga, Laminaria hyperborea. J Plant Physiol 117:233–242CrossRefPubMedGoogle Scholar
  61. Küpper F, Gaquerel E, Cosse A, Adas F, Peters A, Müller D, Kloareg B, Salaün JP, Potin P (2009) Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant Cell Physiol 50:789–800CrossRefPubMedGoogle Scholar
  62. Lesser M (2012) Oxidative stress in tropical marine ecosystems. In: Abele D, Vazquez-Medina JP, Zenteno-Savın T (eds) Oxidative stress in aquatic ecosystems. Blackwell Publishing Ltd, Oxford, pp 9–19Google Scholar
  63. Li L, Zhao J, Tang X (2010) Ultraviolet irradiation induced oxidative stress and response of antioxidant system in an intertidal macroalgae Corallina officinalis L. J Environ Sci 22:716–722CrossRefGoogle Scholar
  64. Lopes GK, Schulman HM, Hermes-Lima M (1999) Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta 1472:142–152CrossRefPubMedGoogle Scholar
  65. Mackerness S (2000) Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: What are the key regulators? Plant Growth Regul 37:27–39CrossRefGoogle Scholar
  66. Mackerness S, Jordan B, Thomas B (1999) Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet radiation (UV-B: 280–320 nm) in green and etiolated buds of pea (Pisum sativum L.). J Photochem Photobiol B: Biol 48:180–188CrossRefGoogle Scholar
  67. Meslet-Cladière L, Delage L, Leroux CJ, Goulitquer S, Leblanc C, Creis E, Gall EA, Stiger-Pouvreau V, Czjzek M, Potin P (2013) Structure/function analysis of a type III polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis. Plant Cell 25:3089–3103CrossRefPubMedPubMedCentralGoogle Scholar
  68. Michalak A (2010) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530Google Scholar
  69. Miller HL III, Neale PJ, Dunton KH (2009) Biological weighting functions for UV inhibition of photosynthesis in the kelp Laminaria hyperborea (Phaeophyceae). J Phycol 45:571–584CrossRefGoogle Scholar
  70. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefPubMedGoogle Scholar
  71. Mittler R, Poulos TL (2007) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, Ronald Press Co, New York, pp 87–100CrossRefGoogle Scholar
  72. Mou S, Zhang X, Dong M, Fan X, Xu J, Cao S, Xu D, Wang W, Ye N (2013) Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress. Plant Biol 15:1033–1039CrossRefPubMedGoogle Scholar
  73. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  74. Nath K, Jajoo A, Poudyal RS, Timilsina R, ParkYS Aro E-M, Nam HG, Lee C-H (2013) Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Lett 587:3372–3381CrossRefPubMedGoogle Scholar
  75. Nicholls P, Fita I, Loewen P (2001) Enzymology and structure of catalases. Adv Inorg Chem 51:51–106CrossRefGoogle Scholar
  76. Pavia H, Cervin G, Lindgren A, Aaberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146CrossRefGoogle Scholar
  77. Pescheck F, Bischof K, Bilger W (2010) Screening of ultraviolet-A and ultraviolet-B radiation in marine green macroalgae (Chlorophyta). J Phycol 46:444–455CrossRefGoogle Scholar
  78. Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:187–203CrossRefPubMedGoogle Scholar
  79. Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136CrossRefPubMedPubMedCentralGoogle Scholar
  80. Rautenberger R, Wiencke C, Bischof K (2013) Acclimation to UV radiation and antioxidative defence in the endemic Antarctic brown macroalga Desmarestia anceps along a depth gradient. Polar Biol 36:1779–1789CrossRefGoogle Scholar
  81. Rautenberger R, Huovinen P, Gómez I (2015) Effects of increased seawater temperature on UV tolerance of Antarctic marine macroalgae. Mar Biol 162:1087–1097CrossRefGoogle Scholar
  82. Roleda M, Wiencke C, Hanelt D (2006) Thallus morphology and optical characteristics affect growth and DNA damage by UV radiation in juvenile Arctic Laminaria sporophytes. Planta 223:407–417CrossRefPubMedGoogle Scholar
  83. Salama AM, Pearce RS (1993) Ageing of cucumber and onion seeds: phospholipase D, lipoxygenase activity and changes in phospholipid content. J Exp Bot 44:1253–1265CrossRefGoogle Scholar
  84. Sampath-Wiley P, Neefus C, Jahnke L (2008) Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). J Exp Mar Biol Ecol 361:83–91CrossRefGoogle Scholar
  85. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a no-nintrusive indicator for rapid assessment of in vivo photosynthesis. Ecol Stud 100:49–70Google Scholar
  86. Shelly K, Heraud P, Beardall J (2003) Interactive effects of PAR and UV-B radiation on PSII electron transport in the marine alga Dunaliella tertiolecta (Chlorophyceae). J Phycol 39:509–512CrossRefGoogle Scholar
  87. Shiu C, Lee TM (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865CrossRefPubMedGoogle Scholar
  88. Sung M-S, Hsu Y-T, Hsu Y-T, Wu T-M, Lee T-M (2009) Hypersalinity and hydrogen peroxide up-regulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress. Mar Biotechnol 11:199–209CrossRefPubMedGoogle Scholar
  89. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270CrossRefPubMedGoogle Scholar
  90. Swanson AK, Druehl LD (2002) Induction, exudation and the UV protective protective role of kelp phlorotannins. Aquat Bot 73:241–253CrossRefGoogle Scholar
  91. Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60CrossRefPubMedGoogle Scholar
  92. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182CrossRefPubMedGoogle Scholar
  93. Tala F, Velasquez M, Mansilla A, Macaya EC, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the South-East Pacific. J Exp Mar Biol Ecol 483:31–41CrossRefGoogle Scholar
  94. Targett N, Arnold T (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205CrossRefGoogle Scholar
  95. Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M (2009) Phylogeographic analyses of the 30°s south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: vicariance or parapatry? Mol Phylogenet Evol 53:679–693CrossRefPubMedGoogle Scholar
  96. Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58CrossRefPubMedGoogle Scholar
  97. Wang Y, Zhao X, Tang X (2016) Antioxidant system responses in two co-occurring green-tide algae under stress conditions. Chin J Oceanol Limn 34:102–108CrossRefGoogle Scholar
  98. Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168:79–87CrossRefPubMedGoogle Scholar
  99. Yu YQ, Zhang QS, Tang YZ, Li XM, Liu HL, Li LX (2013) Diurnal changes of photosynthetic quantum yield in the intertidal macroalga Sargassum thunbergii under simulated tidal emersion conditions. J Sea Res 80:50–57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Center for Development of Nanoscience and Nanotechnology (CEDENNA)Universidad de Santiago de ChileSantiagoChile
  2. 2.Instituto de Ciencias Marinas y LimnológicasUniversidad Austral de ChileValdiviaChile
  3. 3.Laboratorio de Ecosistemas de Macroalgas Antárticas y Subantárticas (LEMAS)Universidad de MagallanesPunta ArenasChile
  4. 4.Laboratorio Costero de Recursos Acuáticos de CalfucoUniversidad Austral de ChileValdiviaChile
  5. 5.Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL)SantiagoChile

Personalised recommendations