Photosynthesis Research

, Volume 130, Issue 1–3, pp 517–527 | Cite as

Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production

  • Julie E. Chaves
  • Paloma Rueda Romero
  • Henning Kirst
  • Anastasios MelisEmail author
Original Article


Heterologous production of isoprene (C5H8) hydrocarbons in cyanobacteria, emanating from sunlight, CO2, and water, is now attracting increasing attention. The concept entails application of an isoprene synthase transgene from terrestrial plants, heterologously expressed in cyanobacteria, aiming to reprogram carbon flux in the terpenoid biosynthetic pathway toward formation and spontaneous release of this volatile chemical from the cell and liquid culture. However, flux manipulations and carbon-partitioning reactions between isoprene (the product) and native terpenoid biosynthesis for cellular needs are not yet optimized for isoprene yield. The primary reactant for isoprene biosynthesis is dimethylallyl diphosphate (DMAPP), whereas both DMAPP and its isopentenyl diphosphate (IPP) isomer are needed for cellular terpenoid biosynthesis. The present work addressed the function of an isopentenyl diphosphate (IPP) isomerase in cyanobacteria and its role in carbon partitioning between IPP and DMAPP, both of which serve, in variable ratios, as reactants for the synthesis of different cellular terpenoids. The work was approached upon the heterologous expression in Synechocystis of the “isopentenyl diphosphate isomerase” gene (FNI) from Streptococcus pneumoniae, using isoprene production as a “reporter process” for substrate partitioning between DMAPP and IPP. It is shown that transgenic expression of the FNI gene in Synechocystis resulted in a 250 % increase in the “reporter isoprene” rate and yield, suggesting that the FNI isomerase shifted the endogenous DMAPP-IPP steady-state pool size toward DMAPP, thereby enhancing rates and yield of isoprene production. The work provides insight into the significance and functional role of the IPP isomerase in these photosynthetic microorganisms.


Carbon partitioning Isopentenyl diphosphate isomerase Isoprene biosynthesis Metabolic engineering Synechocystis Synthetic biology 



Dry cell weight


2-C-methyl-D-erythritol 4-phosphate




Isopentenyl diphosphate


Isoprene synthase


Isopentenyl diphosphate isomerase


Wild type


Recipient strain


operon encoding the phycocyanin subunits and associated linker polypeptides


cpc operon deletion


Chloramphenicol resistance




Geranyl diphosphate


Synechocystis codon-optimized Streptococcus pneumoniae isopentenyl diphosphate isomerase (FNI)


Synechocystis codon-optimized kudzu isoprene synthase

SkIspS, Δcpc+CmR

Synechocystis codon-optimized kudzu isoprene synthase in the psbA2 site, including replacement of cpc operon with chloramphenicol resistance cassette

SkIspS, Δcpc+SSpFNI+CmR

Synechocystis codon-optimized kudzu isoprene synthase in the psbA2 site, including replacement of cpc operon with the Synechocystis codon-optimized Streptococcus pneumoniae isopentenyl diphosphate isomerase (FNI) followed by the chloramphenicol resistance cassette



The work was conducted in partial satisfaction of the requirements for the degree of Doctor of Philosophy by JEC, supported by a graduate student fellowship from the NSF Sage IGERT program.

Supplementary material

11120_2016_293_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 87 kb)


  1. Adam P, Hecht S, Eisenreich W, Kaiser J, Gräwert T, Arigoni D, Rohdich F (2002) Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase. Proc Natl Acad Sci USA 99(19):12108–12113PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ajlani G, Vernotte C (1998) Construction and characterization of a phycobiliprotein-less mutant of Synechocystis sp. PCC 6803. Plant Mol Biol 37(3):577–580PubMedCrossRefGoogle Scholar
  3. Albrecht M, Sandmann G (1994) Light-stimulated carotenoid biosynthesis during transformation of maize etioplasts is regulated by increased activity of isopentenyl pyrophosphate isomerase. Plant Physiol 105(2):529–534PubMedPubMedCentralGoogle Scholar
  4. Arganoff BW, Eggerer H, Henning U, Lynen F (1959) Biosynthesis of terpenes. J Biol Chem 235(2):326–332Google Scholar
  5. Barkley SJ, Desai SB, Poulter CD (2004) Type II isopentenyl diphosphate isomerase from Synechocystis sp. strain PCC 6803. J Bacteriol 186(23):8156–8158PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bentley FK, Melis A (2012) Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotech Bioeng 109:100–109CrossRefGoogle Scholar
  7. Bentley FK, Zurbriggen A, Melis A (2014) Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant 7(1):71–86PubMedCrossRefGoogle Scholar
  8. Chaves JE, Kirst H, Melis A (2015) Isoprene production in Synechocystis under alkaline and saline growth conditions. J Appl Phycol 27(3):1089–1097CrossRefGoogle Scholar
  9. Chen R, Harada Y, Bamba T, Nakazawa Y, Gyokusen K (2012) Overexpression of an Isopentenyl diphosphate isomerase gene to enhance trans-polyisoprene production in Eucommia ulmoides Oliver. BMC Biotechnol 12:8CrossRefGoogle Scholar
  10. Collins AM, Liberton M, Jones HD, Garcia OF, Pakrasi HB, Timlin JA (2012) Photosynthetic pigment localization and thylakoid membrane morphology are altered in Synechocystis 6803 phycobilisome mutants. Plant Physiol 158(4):1600–1609PubMedPubMedCentralCrossRefGoogle Scholar
  11. Ershov Y, Gantt RR, Cunningham FX, Gantt E (2000) Isopentenyl diphosphate isomerase deficiency in Synechocystis sp. strain PCC6803. FEBS Lett 473:337–340PubMedCrossRefGoogle Scholar
  12. Formighieri C, Melis A (2014) Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta 240(2):309–324PubMedCrossRefGoogle Scholar
  13. Formighieri C, Melis A (2016) Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynth Res. doi: 10.1007/s11120-016-0233-2 PubMedGoogle Scholar
  14. Gallagher C, Cervantes-Cervantes M, Wurtzel E (2003) Surrogate biochemistry: use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid accumulation. Appl Microbiol Biotechnol 60(6):713–719PubMedCrossRefGoogle Scholar
  15. Gao X, Gao F, Liu D, Zhang H, Nie X, Yang C (2016) Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy Environ Sci 9:1400–1411CrossRefGoogle Scholar
  16. Kajiwara S, Fraser P, Kondo K, Misawa N (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426PubMedPubMedCentralCrossRefGoogle Scholar
  17. Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2(12):1019–1025PubMedCrossRefGoogle Scholar
  18. Kirst H, Formighieri C, Melis A (2014) Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim Biophys Acta Bioenerg 1837 10:1653–1664CrossRefGoogle Scholar
  19. Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66(1):64–72PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lee GSJ, McCain JH, Bhasin MM (2007) Kent and Riegel’s handbook of industrial chemistry and biotechnology. In: Kent JA (ed) Synthetic organic chemicals. Springer, New York, pp 345–403Google Scholar
  21. Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Fact 10(1):29PubMedPubMedCentralCrossRefGoogle Scholar
  22. Leonard E, Ajikumar PK, Thayer K, Xiao WH, Mo JD, Tidor B, Stephanopoulos G, Prather KL (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA 107(31):13654–13659PubMedPubMedCentralCrossRefGoogle Scholar
  23. Li Z, Sharkey TD (2013) Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves. Plant Cell Environ 36(2):429–437PubMedCrossRefGoogle Scholar
  24. Li FX, Jin ZP, Zhao DX, Cheng LQ, Fu CX, Ma F (2006) Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67(6):553–560PubMedCrossRefGoogle Scholar
  25. Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, α-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92(2):163–179PubMedCrossRefGoogle Scholar
  26. Lichtenthaler HK (2010) Biosynthesis and emission of isoprene, methylbutanol and other volatile plant isoprenoids. In: Herrmann A (ed) The chemistry and biology of volatiles. Wiley, New York, pp 11–47CrossRefGoogle Scholar
  27. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79PubMedCrossRefGoogle Scholar
  28. McCauley SW, Melis A (1986) Quantitation of plastoquinone photoreduction in spinach chloroplasts. Photosynth Res 8(1):3–16PubMedCrossRefGoogle Scholar
  29. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015PubMedPubMedCentralCrossRefGoogle Scholar
  30. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CR, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19(5):470–474PubMedCrossRefGoogle Scholar
  31. Okada K, Kasahara H, Yamaguchi S, Kawaide H, Kamiya Y, Nojiri H, Yamane H (2008) Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis. Plant Cell Physiol 49(4):604–616PubMedCrossRefGoogle Scholar
  32. Pade N, Erdmann S, Enke H, Dethloff F, Dühring U, Georg J, Wambutt J, Kopka J, Hess WR, Zimmermann R, Kramer D, Hagemann M (2016) Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. Biotechnol Biofuel. doi: 10.1186/s13068-016-0503-4 Google Scholar
  33. Poliquin K, Ershov YV, Cunningham FX, Woreta TT, Gantt RR, Gantt E (2004) Inactivation of sll1556 in Synechocystis strain PCC 6803 impairs isoprenoid biosynthesis from pentose phosphate cycle substrates in vitro. J Bacteriol 186(14):4685–4693PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ramos-Valdivia AC, van der Heijden R, Verpoorte R (1997) Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis—a review of its biochemistry and function. Nat Product Rep 14(6):591–603CrossRefGoogle Scholar
  35. Street IP, Poulter CD (1990) Isopentenyldiphosphate: dimethylallyldiphosphate isomerase: construction of a high-level heterologous expression system for the gene from Saccharomyces cerevisiae and identification of an active-site nucleophile. Biochemistry 29(32):7531–7538PubMedCrossRefGoogle Scholar
  36. Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci USA 95(19):11482–11488PubMedPubMedCentralCrossRefGoogle Scholar
  37. Tritsch D, Hemmerlin A, Bach TJ, Rohmer M (2010) Plant isoprenoid biosynthesis via the MEP pathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures. FEBS Lett 584(1):129–134PubMedCrossRefGoogle Scholar
  38. Wang Y, Qiu C, Zhang F, Guo B, Miao Z, Sun X, Tang K (2009) Molecular cloning, expression profiling and functional analyses of a cDNA encoding isopentenyl diphosphate isomerase from Gossypium barbadense. Biosci Rep 29:111–119PubMedCrossRefGoogle Scholar
  39. Weise SE, Li Z, Sutter AE, Corrion A, Banerjee A, Sharkey TD (2013) Measuring dimethylallyl diphosphate available for isoprene synthesis. Anal Biochem 435(1):27–34PubMedCrossRefGoogle Scholar
  40. Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K (2012) Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149(7):1525–1535PubMedCrossRefGoogle Scholar
  41. Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14(6):611–622PubMedCrossRefGoogle Scholar
  42. Zhou CF, Li ZR, Wiberley-Bradford AE, Weise SE, Sharkey TD (2013) Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase. Anal Biochem 440:130–136PubMedCrossRefGoogle Scholar
  43. Zurbriggen A, Kirst H, Melis A (2012) Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria). Bioenergy Res 5(4):814–828CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations