Photosynthesis Research

, Volume 129, Issue 2, pp 147–157 | Cite as

Cyanobacterial ultrastructure in light of genomic sequence data

  • C. R. Gonzalez-Esquer
  • J. Smarda
  • R. Rippka
  • S. D. Axen
  • G. Guglielmi
  • M. Gugger
  • C. A. KerfeldEmail author


Cyanobacteria are physiologically and morphologically diverse photosynthetic microbes that play major roles in the carbon and nitrogen cycles of the biosphere. Recently, they have gained attention as potential platforms for the production of biofuels and other renewable chemicals. Many cyanobacteria were characterized morphologically prior to the advent of genome sequencing. Here, we catalog cyanobacterial ultrastructure within the context of genomic sequence information, including high-magnification transmission electron micrographs that represent the diversity in cyanobacterial morphology. We place the image data in the context of tabulated protein domains—which are the structural, functional, and evolutionary units of proteins—from the 126 cyanobacterial genomes comprising the CyanoGEBA dataset. In particular, we identify the correspondence between ultrastructure and the occurrence of genes encoding protein domains related to the formation of cyanobacterial inclusions. This compilation of images and genome-level domain occurrence will prove useful for a variety of analyses of cyanobacterial sequence data and provides a guidebook to morphological features.


Ultrastructure Morphology Bioinformatics Cyanobacteria Transmission electron microscopy Protein domain Carboxysome Cyanophycin Polyphosphate PHB Glycogen Lipid droplets Gas vesicles 



The authors dedicate this article to the memory of Dr. David Knaff who encouraged its development as an online guidebook to cyanobacterial (subcellular) morphology. CRG-E would like to acknowledge members of the Kerfeld laboratory for helpful discussions. This work was supported by the Office of Science of the US Department of Energy DE-FG02-91ER20021 and with infrastructure support from MSU AgBIO research (CAK and CRG-E).

Supplementary material

11120_2016_286_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (PDF 2382 kb)
11120_2016_286_MOESM2_ESM.pdf (1.2 mb)
Supplementary material 2 (PDF 1254 kb)
11120_2016_286_MOESM3_ESM.pdf (2.8 mb)
Supplementary material 3 (PDF 2893 kb)
11120_2016_286_MOESM4_ESM.pdf (1.4 mb)
Supplementary material 4 (PDF 1467 kb)
11120_2016_286_MOESM5_ESM.pdf (639 kb)
Supplementary material 5 (PDF 638 kb)
11120_2016_286_MOESM6_ESM.pdf (103 kb)
Supplementary material 6 (PDF 103 kb)
11120_2016_286_MOESM7_ESM.pdf (118 kb)
Supplementary material 7 (PDF 119 kb)
11120_2016_286_MOESM8_ESM.pdf (642 kb)
Supplementary material 8 (PDF 641 kb)
11120_2016_286_MOESM9_ESM.pdf (1.3 mb)
Supplementary material 9 (PDF 1289 kb)
11120_2016_286_MOESM10_ESM.pdf (2.8 mb)
Supplementary material 10 (PDF 2820 kb)
11120_2016_286_MOESM11_ESM.pdf (4.6 mb)
Supplementary material 11 (PDF 4740 kb)
11120_2016_286_MOESM12_ESM.pdf (191 kb)
Supplementary material 12 (PDF 191 kb)


  1. Allen MM (1984) Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1–25. doi: 10.1146/annurev.mi.38.100184.000245 CrossRefPubMedGoogle Scholar
  2. Beck C, Knoop H, Axmann I, Steuer R (2012) The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms. BMC Genom 13:56. doi: 10.1186/1471-2164-13-56 CrossRefGoogle Scholar
  3. Benzerara K et al (2014) Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci 111:10933–10938. doi: 10.1073/pnas.1403510111 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Canfield DE (2005) The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36. doi: 10.1146/ CrossRefGoogle Scholar
  5. Chapman KD, Dyer JD, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants. J Lipid Res 53:215–226. doi: 10.1194/jlr.R021436 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dittmann E, Gugger M, Sivonen K, Fewer DP (2015) Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol 23:642–652. doi: 10.1016/j.tim.2015.07.008 CrossRefPubMedGoogle Scholar
  7. Finn RD et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. doi: 10.1093/nar/gkt1223 CrossRefPubMedGoogle Scholar
  8. Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493PubMedPubMedCentralGoogle Scholar
  9. Hess WR (2011) Cyanobacterial genomics for ecology and biotechnology. Curr Opin Microbiol 14:608–614. doi: 10.1016/j.mib.2011.07.024 CrossRefPubMedGoogle Scholar
  10. Hoffmann L, Komárek J, Kaŝtovský J (2005) System of cyanoprokaryotes (cyanobacteria)-state in 2004. Algol Stud 117:95–115. doi: 10.1127/1864-1318/2005/0117-0095 CrossRefGoogle Scholar
  11. Hunter S et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312. doi: 10.1093/nar/gkr948 CrossRefPubMedGoogle Scholar
  12. Jensen TE (1984) Cell inclusions in the cyanobacteria. Ann N Y Acad Sci 435:279–282. doi: 10.1111/j.1749-6632.1984.tb13793.x CrossRefGoogle Scholar
  13. Jensen TE (1993) Cyanobacterial ultrastructure. In: Berne T (ed) Ultrastructure of microalgae, 3rd edn. CRC Press, Florida, pp 8–51Google Scholar
  14. Kaneko T et al (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136. doi: 10.1093/dnares/3.3.109 CrossRefPubMedGoogle Scholar
  15. Kaneko T et al (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213. doi: 10.1093/dnares/8.5.205 CrossRefPubMedGoogle Scholar
  16. Kellenberger E, Ryter A, Sechaud J (1958) Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 4(6):671–678CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kerfeld CA, Melnicki MR (2016) Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 31:66–75CrossRefPubMedGoogle Scholar
  18. Komárek J, Kaštovský J (2003) Coincidences of structural and molecular characters in evolutionary lines of cyanobacteria. Algol Stud 109:305–325CrossRefGoogle Scholar
  19. Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335Google Scholar
  20. Lang NJ (1968) The fine structure of blue-green algae. Annu Rev Microbiol 22:15–46. doi: 10.1146/annurev.mi.22.100168.000311 CrossRefPubMedGoogle Scholar
  21. Lang N, Simon R, Wolk CP (1972) Correspondence of cyanophycin granules with structured granules in Anabaena cylindrica. Arch Mikrobiol 83:313–320. doi: 10.1007/BF00425243 CrossRefGoogle Scholar
  22. Li H, Sherman D, Bao S, Sherman L (2001) Pattern of cyanophycin accumulation in nitrogen-fixing and non-nitrogen-fixing cyanobacteria. Arch Microbiol 176:9–18. doi: 10.1007/s002030100281 CrossRefPubMedGoogle Scholar
  23. Liberton M, Austin JR, Berg RH, Pakrasi HB (2011) Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography. Plant Physiol 155:1656–1666. doi: 10.1104/pp.110.165332 CrossRefPubMedGoogle Scholar
  24. Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56. doi: 10.1016/j.jbiotec.2012.03.005 CrossRefPubMedGoogle Scholar
  25. Markowitz VM et al (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122. doi: 10.1093/nar/gkr1044 CrossRefPubMedGoogle Scholar
  26. Peramuna A, Summers ML (2014) Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme. Arch Microbiol 196:881–890. doi: 10.1007/s00203-014-1027-6 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Price GD et al (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64:753–768. doi: 10.1093/jxb/ers257 CrossRefPubMedGoogle Scholar
  28. Raven J, Allen J (2003) Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol 4:209CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436. doi: 10.1007/BF00446333 CrossRefGoogle Scholar
  30. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  31. Ris H, Singh RN (1961) Electron microscope studies on blue-green algae. J Biophys Biochem Cytol 9:63–80CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562. doi: 10.1126/science.1187936 CrossRefPubMedGoogle Scholar
  33. Schirrmeister BE, Antonelli A, Bagheri HC (2011) The origin of multicellularity in cyanobacteria. BMC Evol Biol 11:45–45. doi: 10.1186/1471-2148-11-45 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schirrmeister BE, Gugger M, Donoghue PCJ (2015) Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58:769–785. doi: 10.1111/pala.12178 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shenoy SR, O’Keefe BR, Bolmstedt AJ, Cartner LK, Boyd MR (2001) Selective interactions of the human immunodeficiency virus-inactivating protein cyanovirin-N with high-mannose oligosaccharides on gp120 and other glycoproteins. J Pharmacol Exp Ther 297:704–710PubMedGoogle Scholar
  36. Shih PM et al (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci 110:1053–1058. doi: 10.1073/pnas.1217107110 CrossRefPubMedGoogle Scholar
  37. Stanier G (1988) Fine structure of cyanobacteria. In: LesterPacker ANG (ed) Methods in enzymology, vol 167. Academic Press, Cambridge, pp 157–172. doi: 10.1016/0076-6879(88)67017-0 Google Scholar
  38. Stanier R, Bazine G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274CrossRefPubMedGoogle Scholar
  39. Thompson AW et al (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550. doi: 10.1126/science.1222700 CrossRefPubMedGoogle Scholar
  40. Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493. doi: 10.1128/jb.01948-06 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tsang T, Roberson R, Vermaas WJ (2013) Polyhydroxybutyrate particles in Synechocystis sp. PCC 6803: facts and fiction. Photosynth Res 118:37–49. doi: 10.1007/s11120-013-9923-1 CrossRefPubMedGoogle Scholar
  42. Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531. doi: 10.1038/22941 CrossRefGoogle Scholar
  43. Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14:208–216. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  44. Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144PubMedPubMedCentralGoogle Scholar
  45. Yoo S-H, Lee B-H, Moon Y, Spalding MH, J-l Jane (2014) Glycogen synthase isoforms in Synechocystis sp. PCC6803: identification of different roles to produce glycogen by targeted mutagenesis. PLoS ONE 9:e91524. doi: 10.1371/journal.pone.0091524 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zarzycki J, Axen SD, Kinney JN, Kerfeld CA (2013) Cyanobacterial-based approaches to improving photosynthesis in plants. J Exp Bot 64:787–798. doi: 10.1093/jxb/ers294 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.MSU-DOE Plant Research LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Department of Biology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  3. 3.Unité des CyanobactériesInstitut PasteurParis Cedex 15France
  4. 4.Bioinformatics Graduate GroupUniversity of CaliforniaSan FranciscoUSA
  5. 5.Institut de Biologie de l’ENS, IBENS, Inserm, U1024, CNRS, UMR 8197Ecole Normale SupérieureParisFrance
  6. 6.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  7. 7.Department of Plant and Microbial BiologyUC BerkeleyBerkeleyUSA
  8. 8.Berkeley Synthetic Biology InstituteUC BerkeleyBerkeleyUSA
  9. 9.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations