Photosynthesis Research

, Volume 130, Issue 1–3, pp 445–467 | Cite as

Unique chlorophylls in picoplankton Prochlorococcus sp. “Physicochemical properties of divinyl chlorophylls, and the discovery of monovinyl chlorophyll b as well as divinyl chlorophyll b in the species Prochlorococcus NIES-2086”

  • Hirohisa Komatsu
  • Katsuhiro Wada
  • Terumitsu Kanjoh
  • Hideaki Miyashita
  • Mayumi Sato
  • Masanobu Kawachi
  • Masami KobayashiEmail author


In this review, we introduce our recent studies on divinyl chlorophylls functioning in unique marine picoplankton Prochlorococcus sp. (1) Essential physicochemical properties of divinyl chlorophylls are compared with those of monovinyl chlorophylls; separation by normal-phase and reversed-phase high-performance liquid chromatography with isocratic eluent mode, absorption spectra in four organic solvents, fluorescence information (emission spectra, quantum yields, and life time), circular dichroism spectra, mass spectra, nuclear magnetic resonance spectra, and redox potentials. The presence of a mass difference of 278 in the mass spectra between [M+H]+ and the ions indicates the presence of a phytyl tail in all the chlorophylls. (2) Precise high-performance liquid chromatography analyses show divinyl chlorophyll a’ and divinyl pheophytin a as the minor key components in four kinds of Prochlorococcus sp.; neither monovinyl chlorophyll a′ nor monovinyl pheophytin a is detected, suggesting that the special pair in photosystem I and the primary electron acceptor in photosystem II are not monovinyl but divinyl-type chlorophylls. (3) Only Prochlorococcus sp. NIES-2086 possesses both monovinyl chlorophyll b and divinyl chlorophyll b, while any other monovinyl-type chlorophylls are absent in this strain. Monovinyl chlorophyll b is not detected at all in the other three strains. Prochlorococcus sp. NIES-2086 is the first example that has both monovinyl chlorophyll b as well as divinyl chlorophylls a/b as major chlorophylls.


Chlorophyll Divinyl chlorophyll Pheophytin Photosynthesis Prochlorococcus 



Chlorophyllide a oxygenase


Circular dichroism




Divinyl chlorophyll


Divinyl pheophytin


Divinyl reductase


Heteronuclear multiple-bond correlation


Heteronuclear single quantum coherence


High-performance liquid chromatography


Monovinyl chlorophyll


Monovinyl pheophytin


Nuclear magnetic resonance


Nuclear Overhauser and exchange spectroscopy






Reaction center



We thank Dr. Mayumi Ohnishi-Kameyama, Dr. Hiroshi Ono (National Food Research Institute), Dr. Hiroyuki Koike (Chuo University), Messrs. Yuhta Isei, Taku Kaitani, Dr. Yutaka Hanawa, and Dr.Yoshihiro Shiraiwa (Univ. Tsukuba) for their kind and invaluable help.


  1. Bazzaz MB (1981) New chlorophyll chromophores isolated from a chlorophyll deficient mutant of maize. Photobiochem Photobiophys 2:199–207Google Scholar
  2. Bazzaz MB, Brereton RG (1982) 4-vinyl-4-desethyl chlorophyll a: a new naturally occurring chlorophyll. FEBS Lett 138:104–108CrossRefGoogle Scholar
  3. Bidigare RR, Ondrusek ME (1996) Spatial and temporal variability of phytoplankton pigment distributions in the central equatorial Pacific Ocean. Deep-Sea Res 43:809–833Google Scholar
  4. Boardman NK, Thorne SW (1971) Sensitive fluorescence method for the determination of chlorophyll a/chlorophyll b rations. Biochim Biophys Acta 253:222–231CrossRefPubMedGoogle Scholar
  5. Bricaud A, Allali K, Morel A, Marie D, Veldhuis M, Partensky F, Vaulot D (1999) Divinyl chlorophyll a-specific absorption coefficients and absorption efficiency factors for Prochlorococcus marinus: kinetics of photoacclimation. Mar Ecol Prog Ser 188:21–32CrossRefGoogle Scholar
  6. Bullerjahn GS, Post AF (1993) The prochlorophytes: are they more than just chlorophyll a/b-containing cyanobacteria? Crit Rev Microbiol 19:43–59CrossRefPubMedGoogle Scholar
  7. Burger-Wiersma T et al (1986) A new prokaryote containing chlorophylls a and b. Nature 320:262–264CrossRefGoogle Scholar
  8. Butler WL, Norris KH (1963) Lifetime of the long-wavelength chlorophyll fluorescence. Biochim Biophys Acta 66:72–77CrossRefPubMedGoogle Scholar
  9. Campbell L, Nolla HA, Vaulot D (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961CrossRefGoogle Scholar
  10. Chen K, Preuβ A, Hackbarth S, Wacker M, Langer K, Roder B (2009) Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. J Photochem Photobiol B 96:66–74CrossRefPubMedGoogle Scholar
  11. Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343CrossRefGoogle Scholar
  12. Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, Johnsrud LW, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300CrossRefGoogle Scholar
  13. Connolly JS, Janzen AF, Samuel EB (1982) Fluorescence lifetimes of chlorophyll a: solvent, concentration and oxygen dependence. Photochem Photobiol 36:559–563CrossRefGoogle Scholar
  14. Cotton TM, Van Duyne RP (1979) An electrochemical investigation of the redox properties of bacteriochlorophyll and bacteriopheophytin in aprotic solvents. J Am Chem Soc 101:7605–7612CrossRefGoogle Scholar
  15. French CS, Smith JHC, Virgin HI, Airth RL (1956) Fluorescence spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins and hypericin. Plant Physiol 31:369–374CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fuhrhop JH (1975) Reversible reactions of porphyrins and metalloporphyrins and electrochemistry. In: Smith KM (ed) Porphyrins and metalloporphyrins (Chap. 14). Elsevier, AmsterdamGoogle Scholar
  17. Fujinuma D, Akutsu S, Komatsu H, Watanabe T, Miyashita H, Iwamoto K, Shiraiwa Y, Islam MR, Koike H, Kawachi M, Kobayashi M (2012) Detection of divinyl chlorophyll a’ and divinyl pheophytin a as minor key components in a marine picoplankton Prochlorococcus sp. RCC315. Photomed Photobiol 34:47–52Google Scholar
  18. Gieskes WW, Kraay GW (1983) Unknown chlorophyll a derivatives in the North Sea and the tropical Atlantic Ocean revealed by HPLC analysis. Limnol Oceanogr 28:757–766CrossRefGoogle Scholar
  19. Gieskes WW, Kraay GW (1986) Floristic and physiological differences between the shallow and the deep nanoplankton community in the euphotic zone of the open tropical Atlantic revealed by HPLC analysis of pigments. Mar Biol 91:567–576CrossRefGoogle Scholar
  20. Goericke R, Repeta DJ (1992) The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prokaryote. Limnol Oceanogr 37:425–433CrossRefGoogle Scholar
  21. Goericke R, Repeta DJ (1993) Chlorophylls a and b and divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean. Mar Ecol Prog Ser 101:307CrossRefGoogle Scholar
  22. Goericke R, Olson RJ, Shalapyonok A (2000) A novel niche for Prochlorococcus sp. in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep-Sea Res I 47:1183–1205CrossRefGoogle Scholar
  23. Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163CrossRefGoogle Scholar
  24. Gouterman M, Wagniere GH, Snyder LC (1963) Spectra of porphyrins: part II. Four orbital model. J Mol Spectrosc 11:108–127CrossRefGoogle Scholar
  25. Gradyushko AT, Sevchenko AN, Solovyov KN, Tsvirko MP (1970) Energetics of photophysical processes in chlorophyll like molecules. Photochem Photobiol 11:387–400CrossRefPubMedGoogle Scholar
  26. Hall DO, Rao KK (1995) Photosynthesis, 5th edn. Cambridge University Press, CambridgeGoogle Scholar
  27. Hanson LK (1991) Molecular orbital theory on monomer pigments. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 993–1014Google Scholar
  28. Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus: insights through comparative genomics. Photosynth Res 70:53–71CrossRefPubMedGoogle Scholar
  29. Iriyama K, Yoshiura M (1977) Absorption spectroscopy of chlorophylls a and b in methanol, dioxane and/or water. Colloid Polym Sci 255:133–139CrossRefGoogle Scholar
  30. Islam MR, Aikawa S, Midorikawa T, Kashino Y, Satoh K, Koike H (2008) slr1923 of Synechocystis sp. PCC6803 is essential for conversion of 3,8-divinyl(proto)chlorophyll(ide) to 3-monovinyl(proto)chlorophyll(ide). Plant Physiol 148:1068–1081CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jabben M, Garcia NA, Braslavsky SE, Schaffner K (1986) Photophysical parameters of chlorophylls a and b Fluorescence and laser-induced optoacoustic measurements. Photochem Photobiol 43:127–131CrossRefGoogle Scholar
  32. Jayaraman S, Knuth ML, Cantwell M, Santos A (2011) High performance liquid chromatographic analysis of phytoplankton pigments using a C16-Amide column. J Chromatogr A 1218:3432–3438CrossRefPubMedGoogle Scholar
  33. Jeffrey SW (1972) Preparation and some properties of crystalline chlorophyll c1 and c2 from marine algae. Biochim Biophys Acta 279:15–33CrossRefPubMedGoogle Scholar
  34. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c, and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194Google Scholar
  35. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauβ N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917CrossRefPubMedGoogle Scholar
  36. Juin C, Bonnet A, Nicolau E, Berard JB, Devillers R, Thiery V, Cadoret JP, Picot L (2015) UPLC-MSE Profiling of phytoplankton metabolites: application to the identification of pigments and structural analysis of metabolites in Porphyridium purpureum. Mar Drugs 13:2541–2558CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kaplanova M, Cermak K (1981) Effect of reabsorption on the concentration dependence of fluorescence lifetimes of chlorophyll a. J Photochem 15:313–319CrossRefGoogle Scholar
  38. Karukstis KK (1991) Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 769–795Google Scholar
  39. Klimov VV, Klevanik AV, Shuvalov VA, Krasnovsky AA (1977a) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186CrossRefPubMedGoogle Scholar
  40. Klimov VV, Allkhverdiev SI, Demeter S, Krasnovsky AA (1977b) Photoreduction of pheophytin in photosystem 2 of chloroplasts with respect to the redox potential of the medium. Dokl Akad Nauk SSSR 249:227–230Google Scholar
  41. Kobayashi M (1989) Study on the molecular mechanism of photosynthetic reaction centers. Thesis, University of Tokyo, TokyoGoogle Scholar
  42. Kobayashi M, Watanabe T, Nakazato M, Ikegami I, Hiyama T, Matsunaga T, Murata N (1988) Chlorophyll a’/P700 and pheophytin a/P680 stoichiometries in higher plants and cyanobacteria determined by HPLC analysis. Biochim Biophys Acta 936:81–89CrossRefGoogle Scholar
  43. Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N, Kano H (2000) The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with Δ2,6-phytadienol. Photosynth Res 63:269–280CrossRefPubMedGoogle Scholar
  44. Kobayashi K, Akiyama M, Kano H, Kise H (2006) Spectroscopy and structure determination. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Dordrecht, The Netherlands, pp 79–94CrossRefGoogle Scholar
  45. Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596–602CrossRefPubMedGoogle Scholar
  46. Kobayashi M, Akutsu S, Fujinuma D, Furukawa D, Komatsu H, Hotota Y, Kato Y, Kuroiwa Y, Watanabe T, Ohnishi-Kameyama M, Ono H, Ohkubo S, Miyashita H (2013) Physicochemical properties of chlorophylls in oxygenic photosynthesis—succession of co-factors from anoxygenic to oxygenic photosynthesis. In: Dubinsky Z (ed) Photosynthesis (Chap. 3). Intech, Rijeka, pp 47–90. doi: 10.5772/55460 Google Scholar
  47. Kobayashi M, Sorimachi Y, Fukayama D, Komatsu H, Kanjoh T, Wada K, Kawachi M, Miyashita H, Ohnishi-Kameyama M, Ono H (2016) Physicochemical properties of chlorophylls and bacteriochlorophylls. In: Mohammad P (ed) Handbook of photosynthesis (Chap. 6). CRC Press, Boca Raton, pp 95–148CrossRefGoogle Scholar
  48. Komatsu H, Fujinuma D, Akutsu S, Fukayama D, Sorimachi Y, Kato Y, Kuroiwa Y, Watanabe T, Miyashita H, Iwamoto K, Shiraiwa Y, Ohnishi-Kameyama M, Ono H, Koike H, Sato M, Kawachi M, Kobayashi M (2014) Physicochemical properties of divinyl chlorophylls a, a′ and divinyl pheophytin a compared with those of monovinyl derivatives. Photomed Photobiol 36:59–69Google Scholar
  49. Komatsu H, Kawachi M, Sato M, Watanabe T, Miyashita H, Koike H, Hanawa Y, Shiraiwa Y, Sorimachi Y, Wada K, Kobayashi M (2015) Presence of both monovinyl chlorophyll b and divinyl chlorophyll b in a picoplankton Prochlorococcus sp. NIES-2086. Photomed Photobiol 37:35–40Google Scholar
  50. Larkum AWD, Scaramuzzi C, Cox GC, Hiller RG, Turner AG (1994) Light-harvesting chlorophyll c-like pigment in Prochloron. Proc Natl Acad Sci USA 91:679–683CrossRefPubMedPubMedCentralGoogle Scholar
  51. Latasa M, Bidigare RR, Ondrusek ME, Kennicutt MC II (1996) HPLC analysis of algal pigments: a comparison exercise among laboratories and recommendations for improved analytical performance. Mar Chem 51:315–324CrossRefGoogle Scholar
  52. Latimer P, Bannister TT, Rabinowitch E (1956) Quantum yields of fluorescence of plant pigments. Science 124:585–586CrossRefPubMedGoogle Scholar
  53. Letelier RM, Bidigare RR, Hebel DV, Ondrusek M, Winn CD, Karl DM (1993) Temporal variability of phytoplankton community structure based on pigment analysis. Limnol Oceanogr 38:1420–1437CrossRefGoogle Scholar
  54. Leupold D, Struck A, Stiel H, Teuchner K, Oberlander S, Scheer H (1990) Excited-state properties of 20-chloro-chlorophyll a. Chem Phys Lett 170:478–484CrossRefGoogle Scholar
  55. Lewin R (1976) Prochlorophyte as a proposed new division of algae. Nature 261:697–698CrossRefPubMedGoogle Scholar
  56. Matthijs HCP, van der StaayGWM Mur LR (1994) Prochlorophytes: the other cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 49–64CrossRefGoogle Scholar
  57. Maxwell DP, Falk S, Trick CG, Huner PA (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543PubMedPubMedCentralGoogle Scholar
  58. Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?. Trends Plant sci 4:130–135CrossRefPubMedGoogle Scholar
  59. Moog RS, Kuki A, Fayer MD, Boxer SG (1984) Excitation transport and trapping in a synthetic chlorophyllide substituted hemoglobin: orientation of the chlorophyll S1 transition dipole. Biochemistry 23:1564–1571CrossRefPubMedGoogle Scholar
  60. Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989–996CrossRefGoogle Scholar
  61. Palenik BP, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355:267–269CrossRefGoogle Scholar
  62. Partensky F, Roche JL, Wyman K, Falkowski PG (1997) The divinyl-chlorophyll a/b-protein complexes of two strains of the oxyphototrophic marine prokaryote Prochlorococcus—characterization and response to changes in growth irradiance. Photosynth Res 51:209–222CrossRefGoogle Scholar
  63. Petke JD, Maggiora GM, Shipman L, Christoffersen RE (1979) Stereoelectronic properties of photosynthetic and related systems—v. ab initio configuration interaction calculations on the ground and lower excited singlet and triplet states of ethyl chlorophyllide a and ethyl pheophorbide a. Photochem Photobiol 30:203–223CrossRefGoogle Scholar
  64. Satoh S, Tanaka A (2006) Identification of chlorophyllide a oxygenase in the Prochlorococcus genome by a comparative genomic approach. Plant Cell Physiol 47:1622–1629CrossRefPubMedGoogle Scholar
  65. Shedbalkar VP, Rebeiz CA (1992) Chloroplast biogenesis: determination of the Molar extinction coefficients of divinyl chlorophyll a and b and their pheophytins. Anal Biochem 207:261–266CrossRefPubMedGoogle Scholar
  66. Smith JHC, Benitez A (1955) Chlorophylls: analysis in plant materials. In: Paech K, Tracey MV (eds) Moderne methoden der pflanzenanalyse, vol 4. Springer, Berlin, pp 142–196CrossRefGoogle Scholar
  67. Steglich C, Mullineaux CW, Teuchner K, Hess WR, Lokstein H (2003) Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS Lett 553:79–84CrossRefPubMedGoogle Scholar
  68. Takeuchi Y, Amao Y (2005) Light-harvesting properties of zinc complex of chlorophyll-a from spirulina in surfactant micellar media. Biometals 18:15–21CrossRefPubMedGoogle Scholar
  69. Tanaka A, Ito H, Tanaka R, Tanaka N, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci 95:12719–12723CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tomita G, Rabinowitch E (1962) Excitation energy transfer between pigments in photosynthetic cells. Biophys J 2:483–499CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T, Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162CrossRefPubMedGoogle Scholar
  72. Tomo T, Akimoto S, Ito H, Tsuchiya T, Fukuya M, Tanaka A, Mimuro M (2009) Replacement of chlorophyll with di-vinyl chlorophyll in the antenna and reaction center complexes of the cyanobacterium Synechocystis sp. PCC 6803: characterization of spectral and photochemical properties. Biochim Biophys Acta 1787:191–200CrossRefPubMedGoogle Scholar
  73. Urbach E, Robertson D, Chisholm SW (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–269CrossRefPubMedGoogle Scholar
  74. Vladkova R (2000) Chlorophyll a self-assembly in polar solvent water mixtures. Photochem Photobiol 71:71–83CrossRefPubMedGoogle Scholar
  75. Wasielewski MR, Norris JR, Shipman LL, Lin C-P, Svec WA (1981) Monomeric chlorophyll a enol: evidence for its possible role as the primary electron donor in photosystem I of plant photosynthesis. Proc Natl Acad Sci USA 78:2957–2961CrossRefPubMedPubMedCentralGoogle Scholar
  76. Watanabe T, Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) chlorophylls. CRC Press, Boca RatonGoogle Scholar
  77. Watanabe T, Hongu A, Honda K, Nakazato M, Konno M, Saitoh S (1984) Preparation of chlorophylls and pheophytins by isocratic liquid chromatography. Anal Sci 56:251–256Google Scholar
  78. Waterbury JB, Rippka R (1989) The order Chlorococales. In: Kreig NR, Holt JB (eds) Bergey’s manual of systematic bacteriologyvol, vol 3. Williams and Wilkens, New York, pp 1728–1746Google Scholar
  79. Weber G, Teale FWJ (1957) Determination of the absolute quantum yield of fluorescent solutions. Trans Faraday Soc 53:646–655CrossRefGoogle Scholar
  80. Weiss C (1978) Electronic absorption spectra of chlorophylls. In: Dolphin D (ed) The Porphyrins. Physical chemistry, Part A, vol III. Academic Press, New York, pp 211–223Google Scholar
  81. White RC, Jones ID, Gibbs E, Butler LS (1972) Fluorometric estimation of chlorophylls, chlorophyllides, pheophytins and pheophorbides in mixtures. J Agric Food Chem 20:773–778CrossRefGoogle Scholar
  82. Wolf H, Scheer H (1973) Stereochemistry and chiroptical properties of pheophorbides and related compounds. Ann N Y Acad Sci 206:549–567CrossRefPubMedGoogle Scholar
  83. Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45CrossRefGoogle Scholar
  84. Zouni A, Witt HT, Kern J, Fromme P, Krauβ N, Saenger W, Orth P (2001) Crystal structure of Photosystem II from synechococcus elongates at 3.8Å resolution. Nature 409:739–743CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hirohisa Komatsu
    • 1
  • Katsuhiro Wada
    • 1
  • Terumitsu Kanjoh
    • 1
  • Hideaki Miyashita
    • 2
  • Mayumi Sato
    • 3
  • Masanobu Kawachi
    • 3
  • Masami Kobayashi
    • 1
    Email author
  1. 1.Division of Materials Science, Faculty of Pure and Applied ScienceUniversity of TsukubaTsukubaJapan
  2. 2.Graduate School of Human and Environment StudiesKyoto UniversityKyotoJapan
  3. 3.National Institute for Environmental StudiesTsukubaJapan

Personalised recommendations