Photosynthesis Research

, Volume 129, Issue 3, pp 253–260 | Cite as

Regulatory network of proton motive force: contribution of cyclic electron transport around photosystem I

  • Toshiharu ShikanaiEmail author


Cyclic electron transport around photosystem I (PSI) generates ∆pH across the thylakoid membrane without net production of NADPH. In angiosperms, two pathways of PSI cyclic electron transport operate. The main pathway depends on PGR5/PGRL1 proteins and is likely identical to the historical Arnon’s pathway. The minor pathway depends on chloroplast NADH dehydrogenase-like (NDH) complex. In assays of their rates in vivo, the two independent pathways are often mixed together. Theoretically, linear electron transport from water to NADP+ cannot satisfy the ATP/NADPH production ratio required by the Calvin-Benson cycle and photorespiration. PGR5/PGRL1-dependent PSI cyclic electron transport contributes substantially to the supply of ATP for CO2 fixation, as does linear electron transport. Also, the contribution of chloroplast NDH cannot be ignored, especially at low light intensity, although the extent of the contribution depends on the plant species. An increase in proton conductivity of ATP synthase may compensate ATP synthesis to some extent in the pgr5 mutant. Combined with the decreased rate of ∆pH generation, however, this mechanism sacrifices homeostasis of the thylakoid lumen pH, seriously disturbing the pH-dependent regulation of photosynthetic electron transport, induction of qE, and downregulation of the cytochrome b 6 f complex. PGR5/PGRL1-dependent PSI cyclic electron transport produces sufficient proton motive force for ATP synthesis and the regulation of photosynthetic electron transport.


Cyclic electron transport NDH NPQ PGR5 Photosystem I Proton motive force 







NADH dehydrogenase-like


Nonphotochemical quenching


Photosystem I/II


Proton motive force





This work was supported by the Japan Science and Technology Agency (CREST) and the Japan Society for the Promotion of Science (25251032).


  1. Allahverdiyeva Y, Isojärvi J, Zhang P, Aro E-M (2015) Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. Life 5:716–743. doi: 10.3390/life5010716 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen J (2002) Photosynthesis of ATP-electrons, proton pumps, rotors, and poise. Cell 110:273–276. doi: 10.1016/S0092-8674(02)00870-X CrossRefPubMedGoogle Scholar
  3. Arnon DI, Allen MB, Whatley FR (1954) Photosynthesis by isolated chloroplasts. Nature 1174:394396Google Scholar
  4. Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355:1419–1431. doi: 10.1098/rstb.2000.0703 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Asada K, Heber U, Schreiber U (1992) Pool size of electrons that can be donated to P700+ as determined in intact leaves: donation to P700+ from stromal components via the intersystem chain. Plant Cell Physiol 33:927–932Google Scholar
  6. Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102:9709–9713. doi: 10.1073/pnas.0503952102 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bailleul B, Cardol P, Breyton C, Finazzi G (2010) Electrochromism: a useful probe to study algal photosynthesis. Photosynth Res 106:179–189. doi: 10.1007/s11120-010-9579-z CrossRefPubMedGoogle Scholar
  8. Baradaran R, Berrisford JM, Minhas GS, Sazanov LA (2013) Crystal structure of the entire respiratory complex I. Nature 494:443–448. doi: 10.1038/nature11871 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876. doi: 10.1093/emboj/17.4.868 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291. doi: 10.1093/molbev/msj029 CrossRefPubMedGoogle Scholar
  11. Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (∆ψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into ∆ψ and ∆pH by ionic strength. Biochemistry 40:1226–1237. doi: 10.1021/bi0018741 CrossRefPubMedGoogle Scholar
  12. DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285. doi: 10.1016/j.cell.2007.12.028 CrossRefPubMedGoogle Scholar
  13. Endo T, Mi H, Shikanai T, Asada K (1997) Donation of electrons to plastoquinone by NAD(P)H dehydrogenase and by ferredoxin-quinone reductase in spinach chloroplasts. Plant Cell Physiol 38:1272–1277CrossRefGoogle Scholar
  14. Endo T, Shikanai T, Takabayashi A, Asada K, Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457:5–8. doi: 10.1016/S0014-5793(99)00989-8 CrossRefPubMedGoogle Scholar
  15. Fisher N, Kramer DM (2014) Non-photochemical reduction of thylakoid photosynthetic redox carriers in vitro: relevance to cyclic electron flow around photosystem I? Biochim Biophys Acta 1837:1944–1954. doi: 10.1016/j.bbabio.2014.09.005 CrossRefPubMedGoogle Scholar
  16. Gotoh E, Matsumoto M, Ogawa K, Kobayashi Y, Tsuyama M (2010) A qualitative analysis of the regulation of cyclic electron flow around photosystem I from the post-illumination chlorophyll fluorescence transient in Arabidopsis: a new platform for the in vivo investigation of the chloroplast redox state. Photosynth Res 103:111–123. doi: 10.1007/s11120-009-9525-0 CrossRefPubMedGoogle Scholar
  17. Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36:541–549. doi: 10.1046/j.1365-313X.2003.01900.x CrossRefPubMedGoogle Scholar
  18. Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523. doi: 10.1016/j.molcel.2012.11.030 CrossRefPubMedGoogle Scholar
  19. Ifuku K, Endo T, Shikanai T, Aro E-M (2011) Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol 52:1560–1568. doi: 10.1093/pcp/pcr098 CrossRefPubMedGoogle Scholar
  20. Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213. doi: 10.1038/nature08885 CrossRefPubMedGoogle Scholar
  21. Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56:407–416. doi: 10.1093/jxb/eri106 CrossRefPubMedGoogle Scholar
  22. Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf. Proc Natl Acad Sci USA 99:10209–10214. doi: 10.1073/pnas.102306999 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kotera E, Tasaka M, Shikanai T (2005) A pentatricopetide repeat protein is essential for RNA editing in chloroplasts. Nature 433:326–330. doi: 10.1038/nature03229 CrossRefPubMedGoogle Scholar
  24. Kou J, Takahashi S, Fan D-Y, Badger MR, Chow WS (2015) Partially dissecting the steady-state electron fluxes in Photosystem I in wild-type and pgr5 and ndh mutants of Arabidopsis. Front Plant Sci 6:758. doi: 10.3389/fpls.2015.00758 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357. doi: 10.1016/j.tplants.2004.05.001 CrossRefPubMedGoogle Scholar
  26. Leister D, Shikanai T (2013) Complexities and protein complexes in the antimycin A-sensitive pathway of cyclic electron flow in plants. Front Plant Sci 4:161. doi: 10.3389/fpls.2013.00161 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matsubayashi T, Wakasugi T, Shinozaki K, Yamaguchi-Shinozaki K, Zaita N, Hidaka T, Meng BY, Ohto C, Tanaka M, Kato A, Maruyama T, Sugiura M (1987) Six chloroplast genes (ndhA-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of the splice sites in ndhA and ndhB pre-mRNAs. Mol Gen Genet 210:385–393CrossRefPubMedGoogle Scholar
  28. Munekage Y, Takeda S, Endo T, Jahns P, Hashimoto T, Shikanai T (2001) Cytochrome b 6 f mutation specifically affects thermal dissipation of absorbed light energy in Arabidopsis. Plant J 28:351–359. doi: 10.1046/j.1365-313X.2001.01178.x CrossRefPubMedGoogle Scholar
  29. Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371. doi: 10.1016/S0092-8674(02)00867-X CrossRefPubMedGoogle Scholar
  30. Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582. doi: 10.1038/nature02598 CrossRefPubMedGoogle Scholar
  31. Nandha B, Finazzi G, Joliot P, Hald S, Johnson GN (2007) The role of PGR5 in the redox poising of photosynthetic electron transport. Biochim Biophys Acta 1767:1252–1259. doi: 10.1016/j.bbabio.2007.07.007 CrossRefPubMedGoogle Scholar
  32. Nishikawa Y, Yamamoto H, Okegawa Y, Wada S, Sato N, Taira Y, Sugimoto K, Makino A, Shikanai T (2012) PGR5-dependent cyclic electron transport around PSI contributes to the redox homeostasis in chloroplasts rather than CO2 fixation and biomass production in rice. Plant Cell Physiol 53:2117–2126. doi: 10.1093/pcp/pcs153 CrossRefPubMedGoogle Scholar
  33. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umezono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574. doi: 10.1038/322572a0 CrossRefGoogle Scholar
  34. Okegawa Y, Kagawa Y, Kobayashi Y, Shikanai T (2008) Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts. Plant Cell Physiol 49:825–834. doi: 10.1093/pcp/pcn055 CrossRefPubMedGoogle Scholar
  35. Okegawa Y, Kobayashi Y, Shikanai T (2010) Physiological links among alternative electron transport pathways reducing and oxidizing plastoquinone in Arabidopsis. Plant J 63:458–468. doi: 10.1111/j.1365-313X.2010.04252.x CrossRefPubMedGoogle Scholar
  36. Peltier G, Aro E-M, Shikanai T (2016) NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis: Involvement in cyclic electron flow, (chloro)respiration, and acclimation to the environment. Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-043014-114752 PubMedGoogle Scholar
  37. Peng L, Shikanai T (2011) Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Physiol 155:1629–1639. doi: 10.1104/pp.110.171264 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Peng L, Shimizu H, Shikanai T (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J Biol Chem 83:34873–34879. doi: 10.1074/jbc.M803207200 CrossRefGoogle Scholar
  39. Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21:3623–3640. doi: 10.1105/tpc.109.068791 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Peng L, Fukao Y, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2011) A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLoS Biol 9:e1001040. doi: 10.1371/journal.pbio.1001040 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217. doi: 10.1146/annurev.arplant.58.091406.110525 CrossRefPubMedGoogle Scholar
  42. Shikanai T (2014) Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Curr Opin Biotechnol 26:25–30. doi: 10.1016/j.copbio.2013.08.012 CrossRefPubMedGoogle Scholar
  43. Shikanai T (2015) Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochim Biophys Acta. doi: 10.1016/j.bbabio.2015.10.013 Google Scholar
  44. Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K, Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95:9705–9709CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedPubMedCentralGoogle Scholar
  46. Stiehl HH, Witt HT (1969) Quantitative treatment of the function of plastoquinone in photosynthesis. Z. Naturforsch B. 24:1588–1598CrossRefPubMedGoogle Scholar
  47. Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci 112:5539–5544. doi: 10.1073/pnas.1418223112 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sugimoto K, Okegawa Y, Tohri A, Long TA, Covert SF, Hisabori T, Shikanai T (2013) A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. Plant Cell Physiol 54:1525–1534. doi: 10.1093/pcp/pct098 CrossRefPubMedGoogle Scholar
  49. Suorsa M, Järvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro E-M (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948. doi: 10.1105/tpc.112.097162 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tagawa K, Tsujimoto HY, Arnon DI (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proc Natl Acad Sci USA 49:567–572CrossRefPubMedPubMedCentralGoogle Scholar
  51. Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567. doi: 10.1104/pp.108.134122 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Takahashi H, Clowez S, Wollman F-A, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954. doi: 10.1038/ncomms2954 PubMedPubMedCentralGoogle Scholar
  53. Tikkanen M, Grieco M, Kangasjärvi S, Aro E-M (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol 152:723–735. doi: 10.1104/pp.109.150250 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano JM, Beyly A, Cuiné S, Plet J, Reiter IM, Genty B, Cournac L, Hippler M, Peltier G (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23:2619–2630. doi: 10.1105/tpc.111.086876 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ueda M, Kuniyoshi T, Yamamoto Y, Sugimoto K, Ishizaki K, Kohchi T, Nishimura Y, Shikanai T (2012) Composition and physiological function of the chloroplast NADH dehydrogenase-like complex in Marchantia polymorpha. Plant J 72:683–693. doi: 10.1111/j.1365-313X.2012.05115.x CrossRefPubMedGoogle Scholar
  56. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wang C, Yamamoto H, Shikanai T (2015) Role of cyclic electron transport around photosystem I in regulating proton motive force. Biochim Biophys Acta 1847:931–938. doi: 10.1016/j.bbabio.2014.11.013 CrossRefPubMedGoogle Scholar
  58. Yamamoto H, Shikanai T (2013) In planta mutagenesis of Src homology 3 domain-like fold of NdhS, a ferredoxin-binding subunit of the chloroplast NADH dehydrogenase-like complex in Arabidopsis. A conserved Arg-193 plays a critical role in ferredoxin binding. J Biol Chem 288:36328–36337. doi: 10.1074/jbc.M113.511584 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yamamoto H, Peng L, Fukao Y, Shikanai T (2011) An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. Plant Cell 23:1480–1493. doi: 10.1105/tpc.110.080291 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yamamoto H, Takahashi S, Badger MR., Shikanai T (2016) Artificial remodeling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nature Plants in pressGoogle Scholar
  61. Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67 (in press)Google Scholar
  62. Yamori W, Shikanai T, Makino A (2015) Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase-like complex performs a physiological role for photosynthesis at low light. Sci Rep 5:13908. doi: 10.1038/srep13908 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yamori W, Makino A, Shikanai T (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci Rep (in press)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Botany, Graduate School of ScienceKyoto UniversitySakyo-kuJapan
  2. 2.CRESTJapan Science and Technology AgencyTokyoJapan

Personalised recommendations