Photosynthesis Research

, Volume 124, Issue 3, pp 315–335 | Cite as

Electronic coupling of the phycobilisome with the orange carotenoid protein and fluorescence quenching

  • Igor N. Stadnichuk
  • Pavel M. Krasilnikov
  • Dmitry V. Zlenko
  • Alexandra Ya. Freidzon
  • Mikhail F. Yanyushin
  • Andrei B. Rubin
Regular Paper


Using computational modeling and known 3D structure of proteins, we arrived at a rational spatial model of the orange carotenoid protein (OCP) and phycobilisome (PBS) interaction in the non-photochemical fluorescence quenching. The site of interaction is formed by the central cavity of the OCP monomer in the capacity of a keyhole to the characteristic external tip of the phycobilin-containing domain (PB) and folded loop of the core-membrane linker LCM within the PBS core. The same central protein cavity was shown to be also the site of the OCP and fluorescence recovery protein (FRP) interaction. The revealed geometry of the OCP to the PBLCM attachment is believed to be the most advantageous one as the LCM, being the major terminal PBS fluorescence emitter, gathers, before quenching by OCP, the energy from most other phycobilin chromophores of the PBS. The distance between centers of mass of the OCP carotenoid 3′-hydroxyechinenone (hECN) and the adjacent phycobilin chromophore of the PBLCM was determined to be 24.7 Å. Under the dipole–dipole approximation, from the point of view of the determined mutual orientation and the values of the transition dipole moments and spectral characteristics of interacting chromophores, the time of the direct energy transfer from the phycobilin of PBLCM to the S1 excited state of hECN was semiempirically calculated to be 36 ps, which corresponds to the known experimental data and implies the OCP is a very efficient energy quencher. The complete scheme of OCP and PBS interaction that includes participation of the FRP is proposed.


Allophycocyanin Fluorescence LCM–polypeptide Orange carotenoid protein Phycobilisome(s) Quenching 





Electronic energy transfer




Internal charge transfer


Fluorescence recovery protein


Long-wavelength terminal emitter


Non-photochemical fluorescence quenching


Orange carotenoid protein


Phycobilin-containing domain of LCM





The authors thank Russian Science Foundation (Project 14-14-00589) for financial support.


  1. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32CrossRefPubMedGoogle Scholar
  2. Agranovich VM, Galanin MD (1982) Electronic excitation energy transfer in condensed matter. North-Holland Publishing Co, AmsterdamGoogle Scholar
  3. Ajlani G, Vernotte C (1998) Deletion of the PB-loop in the LCM subunit does not affect phycobilisome assembly or energy transfer functions in the cyanobacterium Synechocystis sp. PCC 6714. Eur J Biochem 257:154–159CrossRefPubMedGoogle Scholar
  4. Ajlani G, Vernotte C, DiMagno L (1995) Phycobilisome core mutants of Synechocystis PCC 6803. Biochim Biophys Acta 1231:189–196CrossRefGoogle Scholar
  5. Arteni AA, Ajlani G, Boekema EJ (2009) Structural organization of phycobilisomes from Synechocystis sp. strain PCC 6803 and their interaction with the membrane. Biochim Biophys Acta 1787:272–279CrossRefPubMedGoogle Scholar
  6. Baker N, Sept D, Joseph S (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041CrossRefPubMedCentralPubMedGoogle Scholar
  7. Berera R, van Stokkum IHM, Gwizdala M, Wilson A, Kirilovsky D, van Grondelle R (2012) The photophysics of the orange carotenoid protein, a light-powered molecular switch. J Phys Chem B 116:2568–2574CrossRefPubMedGoogle Scholar
  8. Berera R, Gwizdala M, van Stokkum IHM, Kirilovsky D, van Grondelle R (2013) The excited states of the inactive and active forms of the orange carotenoid protein. J Phys Chem B 117:9121–9128CrossRefPubMedGoogle Scholar
  9. Bernát G, Schreiber U, Sendtko E, Stadnichuk I, Rexroth S, Rögner M, Koenig F (2011) Unique properties versus common themes: the atypical cyanobacterium Gloeobacter violaceus PCC 7421 is capable of state transitions and blue-light-induced fluorescence quenching. Plant Cell Physiol 53:528–542CrossRefGoogle Scholar
  10. Boulay C, Wilson A, D’Haene S, Kirilovsky D (2010) Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc Natl Acad Sci USA 107:11620–11625CrossRefPubMedCentralPubMedGoogle Scholar
  11. Brejc K, Ficner R, Huber R, Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J Mol Biol 249:424–440CrossRefPubMedGoogle Scholar
  12. Breneman M, Wiberg KB (2004) Determining atom-centered monopoles from molecular electrostatic potentials: the need for high sampling density in formamide conformational analysis. J Comp Chem 11:361–373CrossRefGoogle Scholar
  13. Capuano V, Braux A-S, Tandeau de Marsac N, Houmard J (1991) The “anchor polypeptide” of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apcE gene. J Biol Chem 266:7239–7247PubMedGoogle Scholar
  14. Egorov VV, Alfimov MV (2007) Theory of the J-band: from Frenkel exciton to the charge transfer. Phys–Uspekhi 50:985–1029Google Scholar
  15. Förster T (1965) In: Sinanoglou O (ed) Modern quantum chemistry. Academic Press, New York, pp 93–137Google Scholar
  16. Fuji R, Ishikawa T, Koyama Y, Taguchi M, Isobe Y, Nagae H, Watanabe Y (2001) Fluorescence spectroscopy of all-trans-anhydrorhodovibrin and spirilloxanthin: detection of the 1Bu- fluorescence. J Phys Chem A 105:5348–5355CrossRefGoogle Scholar
  17. Gall A, Henry S, Takaichi S, Robert B, Cogdell RJ (2005) Preferential incorporation of coloured-carotenoids occurs in the LH2 complexes from non-sulphur purple bacteria under carotenoid-limiting conditions. Photosynth Res 86:25–35CrossRefPubMedGoogle Scholar
  18. Gao X, Wei T, Zhang N, Xie B, Su H, Zhang X, Chen X, Zhou B, Wang Z, Wu J, Zhang Y (2012) Molecular insights into the terminal energy acceptor in cyanobacterial phycobilisome. Mol Microbiol 85:907–915CrossRefPubMedGoogle Scholar
  19. Gindt YM, Zhou J, Bryant DA, Sauer K (1994) Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: assignment of excited state energies to the LCM, β18 and αAP−B chromophores. Biochim Biophys Acta 1186:153–162CrossRefPubMedGoogle Scholar
  20. Glazer AN (1988) Phycobilisomes. Methods Enzymol 167:304–312Google Scholar
  21. Gottschalk L, Lottspeich F, Scheer H (2008) Reconstitution of allophycocyanin from Mastigocladus laminosus with isolated linker polypeptide. Photochem Photobiol 58:761–767CrossRefGoogle Scholar
  22. Granovsky AA (2011) Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory. J Chem Phys 134:214113CrossRefPubMedGoogle Scholar
  23. Granovsky AA (2014) Firefly version 8.1.0. Accessed 10 Sep 2014
  24. Gwizdala M, Wilson A, Kirilovsky D (2011) In vitro reconstitution system of the cyanobacterial photoprotective mechanism mediated by the orange carotenoid protein in Synechocystis PCC 6803. Plant Cell 23:2631–2643CrossRefPubMedCentralPubMedGoogle Scholar
  25. Gwizdala M, Wilson A, Omairi-Nasser A, Kirilovsky D (2013) Characterization of Synechocystis PCC 6803 fluorescence recovery protein involved in photoprotection. Biochim Biophys Acta 1827:348–354CrossRefPubMedGoogle Scholar
  26. Hess B, Kutzner C, van der Spoel D, Lindhal E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:848–854Google Scholar
  27. Holleboom CP, Walla PJ (2014) The back and forth energy transfer between carotenoids and chlorophylls and its role in the regulation of light harvesting. Photosynth Res 119:215–221CrossRefPubMedGoogle Scholar
  28. Holt TK, Krogmann DW (1981) A carotenoid protein from cyanobacteria. Biochim Biophys Acta 637:408–414CrossRefGoogle Scholar
  29. Holzwarth AR (1992) Structure-function relationship and energy transfer in phycobiliprotein antennae. Physiol Plant 83:518–528CrossRefGoogle Scholar
  30. Holzwarth AR, Bittersma E, Reuter W, Wehrmeyer W (1990) Studies on chromophore coupling in isolated phycobiliproteins. Biophys J 57:133–145CrossRefPubMedCentralPubMedGoogle Scholar
  31. Jallet D, Gwizdala M, Kirilovsky D (2012) ApcD, ApcF and ApcE are not required for the orange carotenoid protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803. Biochim Biophys Acta 1817:1418–1427CrossRefPubMedGoogle Scholar
  32. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLSA all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  33. Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–332CrossRefGoogle Scholar
  34. Kerfeld CA (2004) Structure and function of the water-soluble carotenoid-binding proteins in cyanobacteria. Photosynth Res 81:215–225CrossRefPubMedGoogle Scholar
  35. Kirilovsky D, Kerfeld CA (2013) The orange carotenoid protein: a blue–green light photoactive protein. Photochem Photobiol Sci 12:1135–1143CrossRefPubMedGoogle Scholar
  36. Kloz M, Pilla S, Kodis G, Gust D, Moore TA, Moore AL, van Grondelle R, Kennis JTM (2011) Carotenoid photoprotection in artificial photosynthetic antennas. J Am Chem Soc 133:7007–7015CrossRefPubMedGoogle Scholar
  37. Knecht S, Marian CM, Kongsted J, Mennucci B (2013) Statistical physics and computer simulations. J Phys Chem B 117:13808–13815CrossRefPubMedGoogle Scholar
  38. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897CrossRefPubMedGoogle Scholar
  39. Krueger BP, Lampoura SS, van Stokkum IHM, Papagiannakis E, Salvedra JM (2001) Energy transfer in peridinin–chlorophyll-a protein from Amphidinium carterae studied by polarized transient absorption and target analysis. Biophys J 80:2843–2855CrossRefPubMedCentralPubMedGoogle Scholar
  40. Kuzminov FI, Karapetyan NV, Rakhimberdieva MG, Elanskaya IV, Gorbunov MY, Fadeev VV (2012) Investigation of OCP-triggered dissipation of excitation energy in PSI/PSII-less Synechocystis sp. PCC 6803 mutant using non-linear laser fluorimetry. Biochim Biophys Acta 1817:1012–1021CrossRefPubMedGoogle Scholar
  41. Laikov DN (1997) Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem Phys Lett 281:151–156CrossRefGoogle Scholar
  42. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New YorkCrossRefGoogle Scholar
  43. Liao PN, Pillai S, Gust D, Moore TA, Moore AL, Walla PJ (2011) Two-photon study on the electronic interaction between the first excited singlet states in carotenoid-tetrapyrrole dyads. J Phys Chem A 115:4082–4091CrossRefPubMedGoogle Scholar
  44. Makhatadze GI, Privalov PL (1993) Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J Mol Biol 232:660–679CrossRefPubMedGoogle Scholar
  45. Matamala AR, Almonacid DE, Figueroa MF, Martinez-Oyanedel J, Bunster MC (2007) A semiempirical approach to the intra-phycocyanin and inter-phycocyanin fluorescence resonance energy-transfer pathways in phycobilisomes. J Comput Chem 28:1200–1207CrossRefPubMedGoogle Scholar
  46. McGregor A, Klartag M, David L, Adir N (2008) Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J Mol Biol 384:406–421CrossRefPubMedGoogle Scholar
  47. Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182CrossRefPubMedGoogle Scholar
  48. Niedwiedzki D, Koscielecki JF, Cong H, Sullivan JO, Gibson GN, Bridge RR, Frank HF (2007) Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. J Phys Chem B 111:5984–5998CrossRefGoogle Scholar
  49. Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314CrossRefPubMedGoogle Scholar
  50. Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial systems. Chem Rev 104:2021–2071CrossRefPubMedGoogle Scholar
  51. Polívka T, Kerfeld CA, Pascher T, Sundström V (2005) Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry 44:3994–4003CrossRefPubMedGoogle Scholar
  52. Polívka T, Chábera P, Kerfeld CA (2013) Carotenoid–protein interaction alters the S1 energy of hydroxyechinenone in the orange carotenoid protein. Biochim Biophys Acta 1827:248–254CrossRefPubMedGoogle Scholar
  53. Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Stadnichuk IN (2001) Interaction of phycobilisomes with photosystem II dimers and photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40:15780–15788CrossRefPubMedGoogle Scholar
  54. Rakhimberdieva MG, Stadnichuk IN, Elanskaya IV, Karapetyan NV (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett 574:85–88CrossRefPubMedGoogle Scholar
  55. Rakhimberdieva MG, Elanskaya IV, Vermaas WFJ, Karapetyan NV (2010) Carotenoid-triggered energy dissipation in phycobilisomes of Synechocystis sp. PCC 6803 diverts excitation away from reaction centers of both photosystems. Biochim Biophys Acta 1797:241–249CrossRefPubMedGoogle Scholar
  56. Ren Y, Chi B, Melhem O, Wei K, Feng L, Li Y, Han X, Li D, Zhang Y, Wan J, Xu X, Yang M (2013) Understanding the electronic energy transfer pathways in the trimeric and hexameric aggregation state of cyanobacterial phycocyanin within the framework of Förster theory. J Comp Chem 34:1005–1012CrossRefGoogle Scholar
  57. Ritchie DW, Kozakov D, Vajda S (2008) Accelerating and focusing protein-docking correlations using multi-dimensional rotational FFT generating functions. Bioinformatics 24:1865–1873CrossRefPubMedCentralPubMedGoogle Scholar
  58. Ritz T, Damjanovic A, Schulten K, Zhang J-P, Koyama Y (2000) Efficient light harvesting through carotenoids. Photosynth Res 66:125–144CrossRefPubMedGoogle Scholar
  59. Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181CrossRefPubMedGoogle Scholar
  60. Ruban AV, Belgio E, Duffy CDP (2014) In: Allakhverdiev SI, Rubin AB, Shuvalov VA (eds) Contemporary problems of photosynthesis. Moscow-Izhevsk: Institute of Computer Science, Moscow-Izhevsk, pp 41–68Google Scholar
  61. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comp Chem 14:1347–1363CrossRefGoogle Scholar
  62. Scott M, McCollum C, Vasil’ev S, Grozier C, Espie GS, Krol M, Huner NP, Bruce D (2006) Mechanism of the down regulation of photosynthesis by blue light in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 45:8952–8958CrossRefPubMedGoogle Scholar
  63. Sharkov A, Kruykov I, Khoroshilov E, Kruykov P, Fisher R, Scheer H (1994) Femtosecond spectral and anisotropy study of excitation-energy transfer between neighbouring alpha-80 and beta-81 chromophores of allophycocyanin trimers. Biochim Biophys Acta-Bioenerg 1188:349–356CrossRefGoogle Scholar
  64. Sinanoglou O (1965) Modern quantum chemistry. Academic Press, New York, pp 93–137Google Scholar
  65. Stadnichuk IN, Lukashev EP, Elanskaya IV (2009) Fluorescence changes accompanying short-term light adaptations in photosystem I and photosystem II of the cyanobacterium Synechocystis sp. PCC 6803 and phycobiliprotein-impaired mutants: state 1/state 2 transitions and carotenoid-induced quenching of the phycobilisomes. Photosynth Res 99:227–241CrossRefPubMedGoogle Scholar
  66. Stadnichuk IN, Bulychev AA, Lukashev EP, Sinetova MS, Khristin MS, Johnson MP, Ruban AV (2011a) Far-red light-regulated efficient energy transfer from phycobilisomes to photosystem I in the red microalga Galdieria sulphuraria and photosystems-related heterogeneity of phycobilisome population. Biochim Biophys Acta 1807:227–235CrossRefPubMedGoogle Scholar
  67. Stadnichuk IN, Yanyushin MF, Zhgarmukhamedov SK, Maksimov EG, Muronez EM, Paschenko VZ (2011b) Quenching of phycobilisome fluorescence by orange carotenoid-protein. Doklady Biochem Biophys 439:167–170CrossRefGoogle Scholar
  68. Stadnichuk IN, Yanyushin MF, Maksimov EG, Lukashev EP, Zharmukhamedov SK, Elanskaya IV, Paschenko VZ (2012) Site of non-photochemical quenching of the phycobilisome by orange carotenoid protein in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1817:1436–1445CrossRefPubMedGoogle Scholar
  69. Stadnichuk IN, Yanyushin MF, Bernát G, Zlenko DV, Krasilnikov PM, Lukashev EP, Maksimov EG, Paschenko VZ (2013) Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. J Photochem Photobiol B Biol 125:137–145CrossRefGoogle Scholar
  70. Stroebel D, Choquet Y, Popot YL, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 26:413–418CrossRefGoogle Scholar
  71. Sutter M, Wilson A, Leverenz RL, Lopez-Igual R, Thurotte A, Salmeen AE, Kirilovsky D, Kerfeld CA (2013) Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc Natl Acad Sci USA 110:10022–10027CrossRefPubMedCentralPubMedGoogle Scholar
  72. Tian L, van Stokkum JHM, Koehorst RBM, Jongerius A, Kirilovsky D, van Amerongen H (2011) Site, rate and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc 133:18304–18311CrossRefPubMedGoogle Scholar
  73. Tian L, Gwizdala M, van Stokkum JHM, Koehorst RBM, van Amerongen H (2012) Picosecond kinetics of light harvesting and photoprotective quenching in wild type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis sp. PCC 6803. Biophys J 102:1692–1700CrossRefPubMedCentralPubMedGoogle Scholar
  74. Watanabe M, Ikeuchi M (2013) Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth Res 116:265–276CrossRefPubMedGoogle Scholar
  75. Wilson A, Ajlani G, Verbavatz J-M, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007CrossRefPubMedCentralPubMedGoogle Scholar
  76. Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul J-M, Kerfeld CA, van Grondelle R, Robert B, Kennis JTM, Kirilovsky D (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci USA 33:12075–12080CrossRefGoogle Scholar
  77. Wilson A, Kinney JN, Zwart PH, Punginelli C, Haene SD, Perreau F, Klein MG, Kirilovsky D, Kerfeld CA (2010) Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. J Biol Chem 285:18364–18375CrossRefPubMedCentralPubMedGoogle Scholar
  78. Wilson A, Gwizdala M, Mezzettti A, Alexandre M, Kerfeld CA, Kirilovsky D (2012) The essential role of the N-terminal domain of the orange carotenoid protein in cyanobacterial photoprotection: importance of a positive charge for phycobilisome binding. Plant Cell 24:1972–1983CrossRefPubMedCentralPubMedGoogle Scholar
  79. Wu YP, Krogmann DW (1997) The orange carotenoid protein of Synechocystis PCC 6803. Biochim Biophys Acta 1322:1–7CrossRefPubMedGoogle Scholar
  80. Zaks J, Amarnath K (2013) Models and measurements of energy-dependent quenching. Photosynth Res 116:389–409CrossRefPubMedCentralPubMedGoogle Scholar
  81. Zhang H, Liu H, Niedzwiedzki DM, Prado M, Jiang J, Gross ML, Blankenship RE (2014) Molecular mechanism of photoactivation and structural location of the cyanobacterial orange carotenoid protein. Biochemistry 53:13–19CrossRefPubMedCentralPubMedGoogle Scholar
  82. Zhao K-H, Su P, Böhm S, Song B, Zhou Mbubenzer C, Scheer H (2005) Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim Biophys Acta 1706:81–87CrossRefPubMedGoogle Scholar
  83. Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundström V, Polivka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Igor N. Stadnichuk
    • 1
  • Pavel M. Krasilnikov
    • 2
  • Dmitry V. Zlenko
    • 2
  • Alexandra Ya. Freidzon
    • 3
  • Mikhail F. Yanyushin
    • 4
  • Andrei B. Rubin
    • 2
  1. 1.K. A. Timiryazev Institute of Plant Physiology RASMoscowRussia
  2. 2.Biological Faculty of Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Photochemical Centre of Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Fundamental Problems of BiologyRussian Academy of SciencesPushchinoRussia

Personalised recommendations